廣東省廣州市南沙一中達標名校2024年中考四模數學試題含解析_第1頁
廣東省廣州市南沙一中達標名校2024年中考四模數學試題含解析_第2頁
廣東省廣州市南沙一中達標名校2024年中考四模數學試題含解析_第3頁
廣東省廣州市南沙一中達標名校2024年中考四模數學試題含解析_第4頁
廣東省廣州市南沙一中達標名校2024年中考四模數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省廣州市南沙一中達標名校2024年中考四模數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC和△BDE中,點C在邊BD上,邊AC交邊BE于點F,若AC=BD,AB=ED,BC=BE,則∠ACB等于()A.∠EDB B.∠BED C.∠EBD D.2∠ABF2.已知正多邊形的一個外角為36°,則該正多邊形的邊數為().A.12 B.10 C.8 D.63.如圖,直線、及木條在同一平面上,將木條繞點旋轉到與直線平行時,其最小旋轉角為().A. B. C. D.4.去年12月24日全國大約有1230000人參加研究生招生考試,1230000這個數用科學記數法表示為()A.1.23×106 B.1.23×107 C.0.123×107 D.12.3×1055.PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學記數法表示為()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣56.如圖,以O為圓心的圓與直線交于A、B兩點,若△OAB恰為等邊三角形,則弧AB的長度為()A. B.π C.π D.π7.已知⊙O的半徑為3,圓心O到直線L的距離為2,則直線L與⊙O的位置關系是()A.相交 B.相切 C.相離 D.不能確定8.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,現已知小林家距學校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設乘公交車平均每小時走x千米,根據題意可列方程為()A. B. C. D.9.已知拋物線y=(x﹣)(x﹣)(a為正整數)與x軸交于Ma、Na兩點,以MaNa表示這兩點間的距離,則M1N1+M2N2+…+M2018N2018的值是()A. B. C. D.10.若關于x的分式方程的解為非負數,則a的取值范圍是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4二、填空題(本大題共6個小題,每小題3分,共18分)11.已知扇形AOB的半徑OA=4,圓心角為90°,則扇形AOB的面積為_________.12.化簡3m﹣2(m﹣n)的結果為_____.13.同時拋擲兩枚質地均勻的硬幣,則兩枚硬幣全部正面向上的概率是.14.如圖,正比例函數y=kx(k>0)與反比例函數y=6x15.已知x+y=,xy=,則x2y+xy2的值為____.16.如圖,將直尺與含30°角的三角尺擺放在一起,若∠1=20°,則∠2的度數是___.三、解答題(共8題,共72分)17.(8分)已知:如圖所示,拋物線y=﹣x2+bx+c與x軸的兩個交點分別為A(1,0),B(3,0)(1)求拋物線的表達式;(2)設點P在該拋物線上滑動,且滿足條件S△PAB=1的點P有幾個?并求出所有點P的坐標.18.(8分)某商店在2014年至2016年期間銷售一種禮盒.2014年,該商店用3500元購進了這種禮盒并且全部售完;2016年,這種禮盒的進價比2014年下降了11元/盒,該商店用2400元購進了與2014年相同數量的禮盒也全部售完,禮盒的售價均為60元/盒.2014年這種禮盒的進價是多少元/盒?若該商店每年銷售這種禮盒所獲利潤的年增長率相同,問年增長率是多少?19.(8分)如圖,AB是⊙O的直徑,點E是AD上的一點,∠DBC=∠BED.(1)請判斷直線BC與⊙O的位置關系,并說明理由;(2)已知AD=5,CD=4,求BC的長.20.(8分)如圖,在Rt△ABC的頂點A、B在x軸上,點C在y軸上正半軸上,且A(-1,0),B(4,0),∠ACB=90°.(1)求過A、B、C三點的拋物線解析式;(2)設拋物線的對稱軸l與BC邊交于點D,若P是對稱軸l上的點,且滿足以P、C、D為頂點的三角形與△AOC相似,求P點的坐標;(3)在對稱軸l和拋物線上是否分別存在點M、N,使得以A、O、M、N為頂點的四邊形是平行四邊形,若存在請直接寫出點M、點N的坐標;若不存在,請說明理由.圖1備用圖21.(8分)觀察下列等式:第1個等式:;第2個等式:;第3個等式:;第4個等式:;…請解答下列問題:按以上規律列出第5個等式:a5==;用含有n的代數式表示第n個等式:an==(n為正整數);求a1+a2+a3+a4+…+a100的值.22.(10分)李寧準備完成題目;解二元一次方程組,發現系數“□”印刷不清楚.他把“□”猜成3,請你解二元一次方程組;張老師說:“你猜錯了”,我看到該題標準答案的結果x、y是一對相反數,通過計算說明原題中“□”是幾?23.(12分)為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測得岸邊一建筑物P在北偏東30°方向上,繼續行駛40秒到達B處時,測得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結果保留根號).24.在一個不透明的盒子中,裝有3個分別寫有數字1,2,3的小球,他們的形狀、大小、質地完全相同,攪拌均勻后,先從盒子里隨機抽取1個小球,記下小球上的數字后放回盒子,攪拌均勻后再隨機取出1個小球,再記下小球上的數字.(1)用列表法或樹狀圖法寫出所有可能出現的結果;(2)求兩次取出的小球上的數字之和為奇數的概率P.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

根據全等三角形的判定與性質,可得∠ACB=∠DBE的關系,根據三角形外角的性質,可得答案.【詳解】在△ABC和△DEB中,,所以△ABC△BDE(SSS),所以∠ACB=∠DBE.故本題正確答案為C.【點睛】.本題主要考查全等三角形的判定與性質,熟悉掌握是關鍵.2、B【解析】

利用多邊形的外角和是360°,正多邊形的每個外角都是36°,即可求出答案.【詳解】解:360°÷36°=10,所以這個正多邊形是正十邊形.故選:B.【點睛】本題主要考查了多邊形的外角和定理.是需要識記的內容.3、B【解析】

如圖所示,過O點作a的平行線d,根據平行線的性質得到∠2=∠3,進而求出將木條c繞點O旋轉到與直線a平行時的最小旋轉角.【詳解】如圖所示,過O點作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點與直線d重合時,與直線a平行,旋轉角∠1+∠2=90°.故選B【點睛】本題主要考查圖形的旋轉與平行線,解題的關鍵是熟練掌握平行線的性質.4、A【解析】分析:科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.詳解:1230000這個數用科學記數法可以表示為故選A.點睛:考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.5、B【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10﹣n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:0.0000025=2.5×10﹣6;故選B.【點睛】本題考查了用科學記數法表示較小的數,一般形式為a×10﹣n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.6、C【解析】過點作,∵,∴,,∴為等腰直角三角形,,,∵為等邊三角形,∴,∴.∴.故選C.7、A【解析】試題分析:根據圓O的半徑和,圓心O到直線L的距離的大小,相交:d<r;相切:d=r;相離:d>r;即可選出答案.解:∵⊙O的半徑為3,圓心O到直線L的距離為2,∵3>2,即:d<r,∴直線L與⊙O的位置關系是相交.故選A.考點:直線與圓的位置關系.8、D【解析】分析:根據乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學比乘坐公交車上學所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設乘公交車平均每小時走x千米,根據題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關鍵是正確找出題目中的相等關系,用代數式表示出相等關系中的各個部分,列出方程即可.9、C【解析】

代入y=0求出x的值,進而可得出MaNa=-,將其代入M1N1+M2N2+…+M2018N2018中即可求出結論.【詳解】解:當y=0時,有(x-)(x-)=0,解得:x1=,x2=,∴MaNa=-,∴M1N1+M2N2+…+M2018N2018=1-+-+…+-=1-=.故選C.【點睛】本題考查了拋物線與x軸的交點坐標、二次函數圖象上點的坐標特征以及規律型中數字的變化類,利用二次函數圖象上點的坐標特征求出MaNa的值是解題的關鍵.10、C【解析】試題分析:分式方程去分母轉化為整式方程,表示出整式方程的解,根據解為非負數及分式方程分母不為1求出a的范圍即可.解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由題意得:≥1且≠2,解得:a≥1且a≠4,故選C.點睛:此題考查了分式方程的解,需注意在任何時候都要考慮分母不為1.二、填空題(本大題共6個小題,每小題3分,共18分)11、4π【解析】根據扇形的面積公式可得:扇形AOB的面積為,故答案為4π.12、m+2n【解析】分析:先去括號,再合并同類項即可得.詳解:原式=3m-2m+2n=m+2n,故答案為:m+2n.點睛:本題主要考查整式的加減,解題的關鍵是掌握去括號與合并同類項的法則.13、.【解析】試題分析:畫樹狀圖為:共有4種等可能的結果數,其中兩枚硬幣全部正面向上的結果數為1,所以兩枚硬幣全部正面向上的概率=.故答案為.考點:列表法與樹狀圖法.14、1.【解析】

根據反比例函數的性質可判斷點A與點B關于原點對稱,則S△BOC=S△AOC,再利用反比例函數k的幾何意義得到S△AOC=3,則易得S△ABC=1.【詳解】∵雙曲線y=6x∴點A與點B關于原點對稱,∴S△BOC=S△AOC,∵S△AOC=12×1=3,∴S△ABC=2S△AOC故答案為1.15、3【解析】分析:因式分解,把已知整體代入求解.詳解:x2y+xy2=xy(x+y)=3.點睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時候,要注意整體換元法的靈活應用,訓練將一個式子看做一個整體,利用上述方法因式分解的能力.16、50°【解析】

先根據三角形外角的性質求出∠BEF的度數,再根據平行線的性質得到∠2的度數.【詳解】如圖所示:

∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,

∴∠BEF=∠1+∠F=50°,

∵AB∥CD,

∴∠2=∠BEF=50°,

故答案是:50°.【點睛】考查了平行線的性質,解題的關鍵是掌握、運用三角形外角的性質(三角形的一個外角等于與它不相鄰的兩個內角的和).三、解答題(共8題,共72分)17、(1)y=﹣x2+4x﹣3;(2)滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【解析】

(1)由于已知拋物線與x軸的交點坐標,則可利用交點式求出拋物線解析式;(2)根據二次函數圖象上點的坐標特征,可設P(t,-t2+4t-3),根據三角形面積公式得到?2?|-t2+4t-3|=1,然后去絕對值得到兩個一元二次方程,再解方程求出t即可得到P點坐標.【詳解】解:(1)拋物線解析式為y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)設P(t,﹣t2+4t﹣3),因為S△PAB=1,AB=3﹣1=2,所以?2?|﹣t2+4t﹣3|=1,當﹣t2+4t﹣3=1時,t1=t2=2,此時P點坐標為(2,1);當﹣t2+4t﹣3=﹣1時,t1=2+,t2=2﹣,此時P點坐標為(2+,﹣1)或(2﹣,﹣1),所以滿足條件的P點坐標有3個,它們是(2,1)或(2+,﹣1)或(2﹣,﹣1).【點睛】本題考查了待定系數法求二次函數的解析式:在利用待定系數法求二次函數關系式時,要根據題目給定的條件,選擇恰當的方法設出關系式,從而代入數值求解.一般地,當已知拋物線上三點時,常選擇一般式,用待定系數法列三元一次方程組來求解;當已知拋物線的頂點或對稱軸時,常設其解析式為頂點式來求解;當已知拋物線與x軸有兩個交點時,可選擇設其解析式為交點式來求解.18、(1)35元/盒;(2)20%.【解析】

試題分析:(1)設2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據2014年花3500元與2016年花2400元購進的禮盒數量相同,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設年增長率為m,根據數量=總價÷單價求出2014年的購進數量,再根據2014年的銷售利潤×(1+增長率)2=2016年的銷售利潤,即可得出關于m的一元二次方程,解之即可得出結論.試題解析:(1)設2014年這種禮盒的進價為x元/盒,則2016年這種禮盒的進價為(x﹣11)元/盒,根據題意得:,解得:x=35,經檢驗,x=35是原方程的解.答:2014年這種禮盒的進價是35元/盒.(2)設年增長率為m,2014年的銷售數量為3500÷35=100(盒).根據題意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合題意,舍去).答:年增長率為20%.考點:一元二次方程的應用;分式方程的應用;增長率問題.19、(1)BC與⊙O相切;理由見解析;(2)BC=6【解析】試題分析:(1)BC與⊙O相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB為直徑可得∠ADB=90°,從而可得∠CBO=90°,繼而可得BC與⊙O相切(2)由AB為直徑可得∠ADB=90°,從而可得∠BDC=90°,由BC與⊙O相切,可得∠CBO=90°,從而可得∠BDC=∠CBO,可得ΔABC~ΔBDC,所以得BCCD=ACBC,得試題解析:(1)BC與⊙O相切;∵BD=BD,∴∠BAD=∠BED,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB為直徑,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴點B在⊙O上,∴BC與(2)∵AB為直徑,∴∠ADB=90°,∴∠BDC=90°,∵BC與⊙O相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴ΔABC~ΔBDC,∴BCCD=ACBC,∴BC考點:1.切線的判定與性質;2.相似三角形的判定與性質;3.勾股定理.20、見解析【解析】分析:(1)根據求出點的坐標,用待定系數法即可求出拋物線的解析式.(2)分兩種情況進行討論即可.(3)存在.假設直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.分當平行四邊形是平行四邊形時,當平行四邊形AONM是平行四邊形時,當四邊形AMON為平行四邊形時,三種情況進行討論.詳解:(1)易證,得,∴OC=2,∴C(0,2),∵拋物線過點A(-1,0),B(4,0)因此可設拋物線的解析式為將C點(0,2)代入得:,即∴拋物線的解析式為(2)如圖2,當時,則P1(,2),當時,∴OC∥l,∴,∴P2H=·OC=5,∴P2(,5)因此P點的坐標為(,2)或(,5).(3)存在.假設直線l上存在點M,拋物線上存在點N,使得以A、O、M、N為頂點的四邊形為平行四邊形.如圖3,當平行四邊形是平行四邊形時,M(,),(,),當平行四邊形AONM是平行四邊形時,M(,),N(,),如圖4,當四邊形AMON為平行四邊形時,MN與OA互相平分,此時可設M(,m),則∵點N在拋物線上,∴-m=-·(-+1)(--4)=-,∴m=,此時M(,),N(-,-).綜上所述,M(,),N(,)或M(,),N(,)或M(,),N(-,-).點睛:屬于二次函數綜合題,考查相似三角形的判定與性質,待定系數法求二次函數解析式等,注意分類討論的思想方法在數學中的應用.21、(1)(2)(3)【解析】

(1)(2)觀察知,找等號后面的式子規律是關鍵:分子不變,為1;分母是兩個連續奇數的乘積,它們與式子序號之間的關系為:序號的2倍減1和序號的2倍加1.(3)運用變化規律計算【詳解】解:(1)a5=;(2)an=;(3)a1+a2+a3+a4+…+a100.22、(1);(2)-1【解析】

(1)②+①得出4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論