2023屆江西省鷹潭市名校數(shù)學(xué)九年級上冊期末教學(xué)質(zhì)量檢測模擬試題含解析_第1頁
2023屆江西省鷹潭市名校數(shù)學(xué)九年級上冊期末教學(xué)質(zhì)量檢測模擬試題含解析_第2頁
2023屆江西省鷹潭市名校數(shù)學(xué)九年級上冊期末教學(xué)質(zhì)量檢測模擬試題含解析_第3頁
2023屆江西省鷹潭市名校數(shù)學(xué)九年級上冊期末教學(xué)質(zhì)量檢測模擬試題含解析_第4頁
2023屆江西省鷹潭市名校數(shù)學(xué)九年級上冊期末教學(xué)質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知點(﹣3,a),(3,b),(5,c)均在反比例函數(shù)y=的圖象上,則有()A.a(chǎn)>b>c B.c>b>a C.c>a>b D.b>c>a2.如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,若∠BAC=20°,則∠ADC的度數(shù)是()A.90° B.100° C.110° D.130°3.用10長的鋁材制成一個矩形窗框,使它的面積為6.若設(shè)它的一條邊長為,則根據(jù)題意可列出關(guān)于的方程為()A. B. C. D.4.如圖,正比例函數(shù)的圖像與反比例函數(shù)的圖象相交于A、B兩點,其中點A的橫坐標(biāo)為2,當(dāng)時,x的取值范圍是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>25.已知,則的度數(shù)是()A.30° B.45° C.60° D.90°6.如圖,PA,PB分別與⊙O相切于A、B兩點.直線EF切⊙O于C點,分別交PA、PB于E、F,且PA=1.則△PEF的周長為()A.1 B.15 C.20 D.257.從,,,這四個數(shù)字中任取兩個,其乘積為偶數(shù)的概率是()A. B. C. D.8.如圖,將正方形OABC放在平面直角坐標(biāo)系中,O是原點,點A的坐標(biāo)為(1,),則點C的坐標(biāo)為()A.(-,1) B.(-1,) C.(,1) D.(-,-1)9.已知關(guān)于的一元二次方程的一個根是2,則的值為()A.-1 B.1 C.-2 D.210.等腰三角形底邊長為10㎝,周長為36cm,那么底角的余弦等于().A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在中,,為邊上的中線,過點作于點,過點作的平行線,交的延長線于點,在的延長線上截取,連接、.若,,則的長為____________.12.如圖,河的兩岸、互相平行,點、、是河岸上的三點,點是河岸上一個建筑物,在處測得,在處測得,若米,則河兩岸之間的距離約為______米(,結(jié)果精確到0.1米)(必要可用參考數(shù)據(jù):)13.從甲、乙、丙三人中任選兩人參加“青年志愿者”活動,甲被選中的概率為___.14.已知扇形的面積為3πcm2,半徑為3cm,則此扇形的圓心角為_____度.15.如圖,在△ABC中,E,F(xiàn)分別為AB,AC的中點,則△AEF與△ABC的面積之比為.16..甲、乙、丙、丁四位同學(xué)在五次數(shù)學(xué)測驗中他們成績的平均分相等,方差分別是2.3,3.8,5.2,6.2,則成績最穩(wěn)定的同學(xué)是______.17.如圖是一個正方形及其內(nèi)切圓,正方形的邊長為4,隨機地往正方形內(nèi)投一粒米,落在圓內(nèi)的概率是______.18.拋物線y=2x2﹣4x+1的對稱軸為直線__.三、解答題(共66分)19.(10分)某校七年級一班和二班各派出10名學(xué)生參加一分鐘跳繩比賽,成績?nèi)缦卤恚海?)兩個班級跳繩比賽成績的眾數(shù)、中位數(shù)、平均數(shù)、方差如下表:表中數(shù)據(jù)a=,b=,c=.(2)請用所學(xué)的統(tǒng)計知識,從兩個角度比較兩個班跳繩比賽的成績.20.(6分)果農(nóng)周大爺家的紅心獼猴桃深受廣大顧客的喜愛,獼猴桃成熟上市后,他記錄了10天的銷售數(shù)量和銷售單價,其中銷售單價y(元/千克)與時間第x天(x為整數(shù))的數(shù)量關(guān)系如圖所示,日銷量P(千克)與時間第x天(x為整數(shù))的部分對應(yīng)值如表所示:(1)請直接寫出p與x的函數(shù)關(guān)系式及自變量x的取值范圍;(2)求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;(3)在這10天中,哪一天銷售額達到最大,最大銷售額是多少元.21.(6分)已知:如圖,中,平分,是上一點,且.判斷與的數(shù)量關(guān)系并證明.22.(8分)如圖,二次函數(shù)y=x2+bx+c的圖象與x軸交于A,B兩點,與y軸交于點C,且關(guān)于直線x=1對稱,點A的坐標(biāo)為(﹣1,0).(1)求二次函數(shù)的表達式;(2)連接BC,若點P在y軸上時,BP和BC的夾角為15°,求線段CP的長度;(3)當(dāng)a≤x≤a+1時,二次函數(shù)y=x2+bx+c的最小值為2a,求a的值.23.(8分)已知四邊形為的內(nèi)接四邊形,直徑與對角線相交于點,作于,與過點的直線相交于點,.(1)求證:為的切線;(2)若平分,求證:;(3)在(2)的條件下,為的中點,連接,若,的半徑為,求的長.24.(8分)如圖,一次函數(shù)的圖象和反比例函數(shù)的圖象相交于兩點.(1)試確定一次函數(shù)與反比例函數(shù)的解析式;(2)求的面積;(3)結(jié)合圖象,直接寫出使成立的的取值范圍.25.(10分)如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為,點在第一象限,,點是上一點,,.(1)求證:;(2)求的值.26.(10分)在平面直角坐標(biāo)系xOy中,一次函數(shù)y=2x+b的圖象與x軸的交點為A(2,0),與y軸的交點為B,直線AB與反比例函數(shù)y=的圖象交于點C(﹣1,m).(1)求一次函數(shù)和反比例函數(shù)的表達式;(2)直接寫出關(guān)于x的不等式2x+b>的解集;(3)點P是這個反比例函數(shù)圖象上的點,過點P作PM⊥x軸,垂足為點M,連接OP,BM,當(dāng)S△ABM=2S△OMP時,求點P的坐標(biāo).

參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)反比例函數(shù)系數(shù)k2+1大于0,得出函數(shù)的圖象位于第一、三象限內(nèi),在各個象限內(nèi)y隨x的增大而減小,據(jù)此進行解答.【詳解】解:∵反比例函數(shù)系數(shù)k2+1大于0,∴函數(shù)的圖象位于第一、三象限內(nèi),在各個象限內(nèi)y隨x的增大而減小,∵﹣3<0,0<3<5,∴點(﹣3,a)位于第三象限內(nèi),點(3,b),(5,c)位于第一象限內(nèi),∴b>c>a.故選:D.【點睛】本題主要考查反比例函數(shù)的圖象和性質(zhì),解答本題的關(guān)鍵是確定反比例函數(shù)的系數(shù)大于0,并熟練掌握反比例函數(shù)的性質(zhì),此題難度一般.2、C【解析】根據(jù)三角形內(nèi)角和定理以及圓內(nèi)接四邊形的性質(zhì)即可解決問題;【詳解】解:∵AB是直徑,

∴∠ACB=90°,

∵∠BAC=20°,

∴∠B=90°-20°=70°,

∵∠ADC+∠B=180°,

∴∠ADC=110°,

故選C.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì)、三角形的內(nèi)角和定理、圓周角定理等知識,解題的關(guān)鍵是熟練掌握基本知識.3、A【分析】一邊長為xm,則另外一邊長為(5﹣x)m,根據(jù)它的面積為1m2,即可列出方程式.【詳解】一邊長為xm,則另外一邊長為(5﹣x)m,由題意得:x(5﹣x)=1.故選A.【點睛】本題考查了由實際問題抽象出一元二次方程,難度適中,解答本題的關(guān)鍵讀懂題意列出方程式.4、D【分析】先根據(jù)反比例函數(shù)與正比例函數(shù)的性質(zhì)求出B點坐標(biāo),再由函數(shù)圖象即可得出結(jié)論.【詳解】解:∵反比例函數(shù)與正比例函數(shù)的圖象均關(guān)于原點對稱,

∴A、B兩點關(guān)于原點對稱,

∵點A的橫坐標(biāo)為1,∴點B的橫坐標(biāo)為-1,

∵由函數(shù)圖象可知,當(dāng)-1<x<0或x>1時函數(shù)y1=k1x的圖象在的上方,

∴當(dāng)y1>y1時,x的取值范圍是-1<x<0或x>1.

故選:D.【點睛】本題考查的是反比例函數(shù)與一次函數(shù)的交點問題,能根據(jù)數(shù)形結(jié)合求出y1>y1時x的取值范圍是解答此題的關(guān)鍵.5、C【解析】根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:由,得α=60°,

故選:C.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.6、C【分析】由切線長定理知,AE=CE,F(xiàn)B=CF,PA=PB=1,然后根據(jù)△PEF的周長公式即可求出其結(jié)果.【詳解】解:∵PA、PB分別與⊙O相切于點A、B,⊙O的切線EF分別交PA、PB于點E、F,切點C在弧AB上,∴AE=CE,F(xiàn)B=CF,PA=PB=4,∴△PEF的周長=PE+EF+PF=PA+PB=2.故選:C.【點睛】本題主要考查了切線長定理的應(yīng)用,解此題的關(guān)鍵是求出△PEF的周長=PA+PB.7、C【分析】畫樹狀圖得出所有等可能結(jié)果,從中找到符合條件的結(jié)果數(shù),再根據(jù)概率公式計算可得.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,任取兩個不同的數(shù),其中積為偶數(shù)的有6種結(jié)果,∴積為偶數(shù)的概率是,故選:C.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.8、A【解析】試題分析:作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵,也是本題的難點.如圖:過點A作AD⊥x軸于D,過點C作CE⊥x軸于E,根據(jù)同角的余角相等求出∠OAD=∠COE,再利用“角角邊”證明△AOD和△OCE全等,根據(jù)全等三角形對應(yīng)邊相等可得OE=AD,CE=OD,然后根據(jù)點C在第二象限寫出坐標(biāo)即可.∴點C的坐標(biāo)為(-,1)故選A.考點:1、全等三角形的判定和性質(zhì);2、坐標(biāo)和圖形性質(zhì);3、正方形的性質(zhì).9、D【分析】把代入原方程得到關(guān)于的一元一次方程,解方程即可.【詳解】解:把代入原方程得:故選D.【點睛】本題考查的是一元二次方程的解的含義,掌握方程解的含義是解題的關(guān)鍵.10、A【分析】過頂點A作底邊BC的垂線AD,垂足是D點,構(gòu)造直角三角形.根據(jù)等腰三角形的性質(zhì),運用三角函數(shù)的定義,則可以求得底角的余弦cosB的值.【詳解】解:如圖,作AD⊥BC于D點.則CD=5cm,AB=AC=13cm.∴底角的余弦=.故選A.【點睛】本題考查的是解直角三角形,解答本題的關(guān)鍵是熟練掌握等腰三角形的三線合一的性質(zhì):等腰三角形頂角平分線、底邊上的高,底邊上的中線重合.二、填空題(每小題3分,共24分)11、【分析】首先可判斷四邊形BGFD是平行四邊形,再由直角三角形斜邊中線等于斜邊一半,可得BD=FD,則可判斷四邊形BGFD是菱形,則GF=10,則AF=16,AC=20,在Rt△ACF中利用勾股定理可求出CF的值.【詳解】解:∵AG∥BD,BD=FG,∴四邊形BGFD是平行四邊形,∵CF⊥BD,∴CF⊥AG,又∵點D是AC中點,∴BD=DF=AC,∴四邊形BGFD是菱形,∴GF=BG=10,則AF=26-10=16,AC=2×10=20,∵在Rt△ACF中,∠CFA=90°,∴即故答案是:1.【點睛】本題考查了菱形的判定與性質(zhì)、勾股定理及直角三角形的斜邊中線的性質(zhì),解答本題的關(guān)鍵是判斷出四邊形BGFD是菱形.12、54.6【分析】過P點作PD垂直直線b于點D,構(gòu)造出兩個直角三角形,設(shè)河兩岸之間的距離約為x米,根據(jù)所設(shè)分別求出BD和AD的值,再利用AD=AB+BD得出含x的方程,解方程即可得出答案.【詳解】過P點作PD垂直直線b于點D設(shè)河兩岸之間的距離約為x米,即PD=x,則,可得:解得:x=54.6故答案為54.6【點睛】本題考查的是銳角三角函數(shù)的應(yīng)用,解題關(guān)鍵是做PD垂直直線b于點D,構(gòu)造出直角三角形.13、【分析】畫出樹狀圖求解即可.【詳解】如圖,一共有6中不同的選法,選中甲的情況有4種,∴甲被選中的概率為:.故答案為【點睛】本題考查了樹狀圖法或列表法求概率,解題的關(guān)鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數(shù)m除以所有等可能發(fā)生的情況數(shù)n即可,即.14、120【分析】利用扇形的面積公式:S=計算即可.【詳解】設(shè)扇形的圓心角為n°.則有3π=,解得n=120,故答案為120【點睛】此題主要考查扇形的面積公式,解題的關(guān)鍵是熟知扇形的面積公式的運用.15、3:3.【解析】試題解析:∵E、F分別為AB、AC的中點,∴EF=BC,DE∥BC,∴△ADE∽△ABC,∴.考點:3.相似三角形的判定與性質(zhì);3.三角形中位線定理..16、甲【分析】方差反映了一組數(shù)據(jù)的波動情況,方差越小越穩(wěn)定,據(jù)此可判斷.【詳解】∵2.3<3.8<5.2<6.2,∴,∴成績最穩(wěn)定的是甲.故答案為:甲.【點睛】本題考查了方差的概念,正確理解方差所表示的意義是解題的關(guān)鍵.17、【分析】根據(jù)題意算出正方形的面積和內(nèi)切圓面積,再利用幾何概率公式加以計算,即可得到所求概率.【詳解】解:∵正方形的邊長為4,

∴正方形的面積S正方形=16,內(nèi)切圓的半徑r=2,

因此,內(nèi)切圓的面積為S內(nèi)切圓=πr2=4π,可得米落入圓內(nèi)的概率為:故答案為:【點睛】本題考查幾何概率、正多邊形和圓,解答本題的關(guān)鍵是明確題意,屬于中檔題.18、x=1【詳解】解:∵y=2x2﹣4x+1=2(x﹣1)2﹣1,∴對稱軸為直線x=1,故答案為:x=1.【點睛】本題主要考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點坐標(biāo)為(h,k).三、解答題(共66分)19、解:(1)a=135,b=134.5,c=1.6;(2)①從眾數(shù)(或中位數(shù))來看,一班成績比二班要高,所以一班的成績好于二班;②一班和二班的平均成績相同,說明他們的水平相當(dāng);③一班成績的方差小于二班,說明一班成績比二班穩(wěn)定.【分析】(1)根據(jù)表中數(shù)據(jù)和中位數(shù)的定義、平均數(shù)和方差公式進行計算可求出表中數(shù)據(jù);(2)從不同角度評價,標(biāo)準(zhǔn)不同,會得到不同的結(jié)果.【詳解】解:(1)由表可知,一班135出現(xiàn)次數(shù)最多,為5次,故眾數(shù)為135;由于表中數(shù)據(jù)為從小到大依次排列,所以處于中間位置的數(shù)為134和135,中位數(shù)為=134.5;根據(jù)方差公式:s2==1.6,∴a=135,b=134.5,c=1.6;(2)①從眾數(shù)看,一班一分鐘跳繩135的人數(shù)最多,二班一分鐘跳繩134的人數(shù)最多;所以一班的成績好于二班;②從中位數(shù)看,一班一分鐘跳繩135以上的人數(shù)比二班多;③從方差看,S2一<S2二;一班成績波動小,比較穩(wěn)定;④從最好成績看,二班速度最快的選手比一班多一人;⑤一班和二班的平均成績相同,說明他們的水平相當(dāng).【點睛】此題是一道實際問題,不僅考查了統(tǒng)計平均數(shù)、中位數(shù)、眾數(shù)和方差的定義,更考查了同學(xué)們應(yīng)用知識解決問題的發(fā)散思維能力.20、(1)p=20x+200(0<x≤1且x為整數(shù));(2)y=;(3)在這1天中,第1天銷售額達到最大,最大銷售額是4元【分析】(1)從表格中的數(shù)據(jù)上看,是一次函數(shù),用待定系數(shù)法可得p與x的函數(shù)關(guān)系式;(2)是分段函數(shù),利用待定系數(shù)法可得y與x的函數(shù)關(guān)系式;(3)根據(jù)銷售額=銷量×銷售單價,列函數(shù)關(guān)系式,并配方可得結(jié)論.【詳解】(1)由表格規(guī)律可知:p與x的函數(shù)關(guān)系是一次函數(shù),∴設(shè)解析式為:p=kx+b,把(1,220)和(3,260)代入得:,∴,∴p=20x+200,∴p與x的函數(shù)關(guān)系式為:p=20x+200(0<x≤1且x為整數(shù))(2)①當(dāng)0<x≤8時,設(shè)y與x的解析式為:y=kx+b(k≠0)把(2,13)和(8,1)代入得:,解得:,∴解析式為:yx+14(k≠0);②當(dāng)8<x≤1時,y=1.綜上所述:y與x(x為整數(shù))的函數(shù)關(guān)系式為:y;(3)設(shè)銷售額為w元,當(dāng)0<x≤8時,w=py=(x+14)(20x+200)=﹣1x2+180x+2800=﹣1(x﹣9)2+361.∵x是整數(shù)且0<x≤8,∴當(dāng)x=8時,w有最大值為:﹣1(8﹣9)2+361=3600,當(dāng)8<x≤1時,w=py=1(20x+200)=200x+3.∵x是整數(shù),200>0,∴當(dāng)8<x≤1時,w隨x的增大而增大,∴當(dāng)x=1時,w有最大值為:200×1+3=4.∵3600<4,∴在這1天中,第1天銷售額達到最大,最大銷售額是4元.【點睛】本題考查了二次函數(shù)的性質(zhì)在實際生活中的應(yīng)用.最大利潤的問題常利函數(shù)的增減性來解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結(jié)合實際選擇最優(yōu)方案.21、,理由見解析.【分析】根據(jù)題意,先證明∽,則,得到,然后得到結(jié)論成立.【詳解】證明:;理由如下:如圖:∵平分,∴,∵,∴∽,∴,∴,∴.【點睛】本題考查了相似三角形的判定和性質(zhì),以及等角對等邊,解題的關(guān)鍵是熟練掌握相似三角形的判定和性質(zhì)進行解題.22、(1)y=x2﹣2x﹣3;(2)CP的長為3﹣或3﹣3;(3)a的值為1﹣或2+.【解析】(1)先根據(jù)題意得出點B的坐標(biāo),再利用待定系數(shù)法求解可得;

(2)分點P在點C上方和下方兩種情況,先求出∠OBP的度數(shù),再利用三角函數(shù)求出OP的長,從而得出答案;

(3)分對稱軸x=1在a到a+1范圍的右側(cè)、中間和左側(cè)三種情況,結(jié)合二次函數(shù)的性質(zhì)求解可得.【詳解】(1)∵點A(﹣1,0)與點B關(guān)于直線x=1對稱,∴點B的坐標(biāo)為(3,0),代入y=x2+bx+c,得:,解得,所以二次函數(shù)的表達式為y=x2﹣2x﹣3;(2)如圖所示:由拋物線解析式知C(0,﹣3),則OB=OC=3,∴∠OBC=45°,若點P在點C上方,則∠OBP=∠OBC﹣∠PBC=30°,∴OP=OBtan∠OBP=3×=,∴CP=3﹣;若點P在點C下方,則∠OBP′=∠OBC+∠P′BC=60°,∴OP′=OBtan∠OBP′=3×=3,∴CP=3﹣3;綜上,CP的長為3﹣或3﹣3;(3)若a+1<1,即a<0,則函數(shù)的最小值為(a+1)2﹣2(a+1)﹣3=2a,解得a=1﹣(正值舍去);若a<1<a+1,即0<a<1,則函數(shù)的最小值為1﹣2﹣3=2a,解得:a=﹣2(舍去);若a>1,則函數(shù)的最小值為a2﹣2a﹣3=2a,解得a=2+(負(fù)值舍去);綜上,a的值為1﹣或2+.【點睛】本題是二次函數(shù)的綜合問題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、三角函數(shù)的運用、二次函數(shù)的圖象與性質(zhì)及分類討論思想的運用.23、(1)證明見解析(2)證明見解析(3)【分析】(1)根據(jù)直徑所對的圓周角為90°,得到∠ADC=90°,根據(jù)直角三角形兩銳角互余得到∠DAC+∠DCA=90°,再根據(jù)同弧或等弧所對的圓周角相等,可得到∠FAD+∠DAC=90°,即可得出結(jié)論;(2)連接OD.根據(jù)圓周角定理和角平分線定義可得∠DOA=∠DOC,即可得出結(jié)論;(3)連接OD交CF于M,作EP⊥AD于P.可求出AD=4,AF∥OM.根據(jù)三角形中位線定理得出OM=AF.證明△ODE≌△OCM,得到OE=OM.設(shè)OM=m,用m表示出OE,AE,AP,DP.通過證明△EAN∽△DPE,根據(jù)相似三角形對應(yīng)邊成比例,求出m的值,從而求得AN,AE的值.在Rt△NAE中,由勾股定理即可得出結(jié)論.【詳解】(1)∵AC為⊙O的直徑,∴∠ADC=90°,∴∠DAC+∠DCA=90°.∵,∴∠ABD=∠DCA.∵∠FAD=∠ABD,∴∠FAD=∠DCA,∴∠FAD+∠DAC=90°,∴CA⊥AF,∴AF為⊙O的切線.(2)連接OD.∵,∴∠ABD=∠AOD.∵,∴∠DBC=∠DOC.∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠DOA=∠DOC,∴DA=DC.(3)連接OD交CF于M,作EP⊥AD于P.∵AC為⊙O的直徑,∴∠ADC=90°.∵DA=DC,∴DO⊥AC,∴∠FAC=∠DOC=90°,AD=DC==4,∴∠DAC=∠DCA=45°,AF∥OM.∵AO=OC,∴OM=AF.∵∠ODE+∠DEO=90°,∠OCM+∠DEO=90°,∴∠ODE=∠OCM.∵∠DOE=∠COM,OD=OC,∴△ODE≌△OCM,∴OE=OM.設(shè)OM=m,∴OE=m,,,∴.∵∠AED+∠AEN=135°,∠AED+∠ADE=135°,∴∠AEN=∠ADE.∵∠EAN=∠DPE,∴△EAN∽△DPE,∴,∴,∴,∴,,由勾股定理得:.【點睛】本題是圓的綜合題.考查了圓周角定理,切線的判定,相似三角形的判定與性質(zhì),三角形的中位線定理等知識.用含m的代數(shù)式表示出相關(guān)線段的長是解答本題的關(guān)鍵.24、(1)反比例函數(shù)的解析式為,一次函數(shù)的解析式為;(2)8;(3)或.【分析】(1)將點A代入反比例函數(shù)中求出反比例函數(shù)的解析式,再根據(jù)反比例函數(shù)求出點B的坐標(biāo),最后將A和B的坐標(biāo)代入一次函數(shù)解析式中求出一次函數(shù)的解析式;(2)求出一次函數(shù)與x軸的交點坐標(biāo),再利用割補法得到,即可得出答案;(3)根據(jù)圖像判斷即可得出答案.【詳解】解:(1)∵在反比例函數(shù)的圖象上,∴,則反比例函數(shù)的解析式為.將代入,得,∴.將兩點的坐標(biāo)分別代入,得解得則一次函數(shù)的解析式為.(2)設(shè)一次函數(shù)的圖象與軸的交點為.在中,令,得,∴,即,則.(3)∵即一次函數(shù)的圖像在反比例函數(shù)的圖像的上方∴或.【點睛】本題考查的是一次函數(shù)與反比例函數(shù)的綜合,難度不高,需要熟練掌握一次函數(shù)與反比例函數(shù)的圖像與性質(zhì).25、(1)證明見解析;(2)cos∠ABO=【分析】(1)過點作點,在中,利用銳角三角函數(shù)的知識求出BD的長,再用勾股定理求出OD、AB、BC的長,所以AB=BC,從而得到∠ACB=∠BAO,然后根據(jù)兩角分別相等的兩個三角形相似解答即可;(2)在中求出∠BAO的余弦值,根據(jù)∠ABO=∠BAO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論