




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、函 數【1.2.1】函數的概念(1)函數的概念設、是兩個非空的數集,如果按照某種對應法則,對于集合中任何一個數,在集合中都有唯一確定的數和它對應,那么這樣的對應(包括集合,以及到的對應法則)叫做集合到的一個函數,記作函數的三要素:定義域、值域和對應法則只有定義域相同,且對應法則也相同的兩個函數才是同一函數(2)區間的概念及表示法設是兩個實數,且,滿足的實數的集合叫做閉區間,記做;滿足的實數的集合叫做開區間,記做;滿足,或的實數的集合叫做半開半閉區間,分別記做,;滿足的實數的集合分別記做注意:對于集合與區間,前者可以大于或等于,而后者必須(3)求函數的定義域時,一般遵循以下原則:是整式時,定義域
2、是全體實數是分式函數時,定義域是使分母不為零的一切實數是偶次根式時,定義域是使被開方式為非負值時的實數的集合對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1中,零(負)指數冪的底數不能為零若是由有限個基本初等函數的四則運算而合成的函數時,則其定義域一般是各基本初等函數的定義域的交集對于求復合函數定義域問題,一般步驟是:若已知的定義域為,其復合函數的定義域應由不等式解出對于含字母參數的函數,求其定義域,根據問題具體情況需對字母參數進行分類討論由實際問題確定的函數,其定義域除使函數有意義外,還要符合問題的實際意義(4)求函數的值域或最值求函數最值的常用方法和求函數值域
3、的方法基本上是相同的事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值因此求函數的最值與值域,其實質是相同的,只是提問的角度不同求函數值域與最值的常用方法:觀察法:利用常見函數的值域來求一次函數y=ax+b(a0)的定義域為R,值域為R;反比例函數的定義域為x|x0,值域為y|y0;二次函數的定義域為R,當a>0時,值域為;當a<0時,值域為配方法:判別式法:若函數可以化成一個系數含有的關于的二次,則在時,由于為實數,故必須有,從而確定函數的值域或最值不等式法:利用基本不等式確定函數的值域或最值轉化成型如:,利用平均值不等式公式來求值域;換元法:通過變量代
4、換達到化繁為簡、化難為易的目的,三角代換可將代數函數的最值問題轉化為三角函數的最值問題反函數法:利用函數和它的反函數的定義域與值域的互逆關系確定函數的值域或最值數形結合法:利用函數圖象或幾何方法確定函數的值域或最值函數的單調性法【1.2.2】函數的表示法(5)函數的表示方法表示函數的方法,常用的有解析法、列表法、圖象法三種 解析法:就是用數學表達式表示兩個變量之間的對應關系列表法:就是列出表格來表示兩個變量之間的對應關系圖象法:就是用圖象表示兩個變量之間的對應關系(6)映射的概念設、是兩個集合,如果按照某種對應法則,對于集合中任何一個元素,在集合中都有唯一的元素和它對應,那么這樣的對應(包括集
5、合,以及到的對應法則)叫做集合到的映射,記作給定一個集合到集合的映射,且如果元素和元素對應,那么我們把元素叫做元素的象,元素叫做元素的原象(7)求函數解析式的題型有:1)已知函數類型,求函數的解析式:待定系數法;2)已知求或已知求:換元法、配湊法;3)已知函數圖像,求函數解析式;4)滿足某個等式,這個等式除外還有其他未知量,需構造另個等式解方程組法;5)應用題求函數解析式常用方法有待定系數法等1.3函數的基本性質【1.3.1】單調性與最大(小)值(1)函數的單調性定義及判定方法函數的性 質定義圖象判定方法函數的單調性如果對于屬于定義域I內某個區間上的任意兩個自變量的值x1、x2,當x1<
6、 x2時,都有f(x1)<f(x2),那么就說f(x)在這個區間上是增函數(1)利用定義(2)利用已知函數的單調性(3)利用函數圖象(在某個區間圖 象上升為增)(4)利用復合函數如果對于屬于定義域I內某個區間上的任意兩個自變量的值x1、x2,當x1< x2時,都有f(x1)>f(x2),那么就說f(x)在這個區間上是減函數(1)利用定義(2)利用已知函數的單調性(3)利用函數圖象(在某個區間圖象下降為減)(4)利用復合函數在公共定義域內,兩個增函數的和是增函數,兩個減函數的和是減函數,增函數減去一個減函數為增函數,減函數減去一個增函數為減函數yxo對于復合函數,令,若為增,為
7、增,則為增;若為減,為減,則為增;若為增,為減,則為減;若為減,為增,則為減(2)打“”函數的圖象與性質分別在、上為增函數,分別在、上為減函數(3)最大(小)值定義 一般地,設函數的定義域為,如果存在實數滿足:(1)對于任意的,都有;(2)存在,使得那么,我們稱是函數 的最大值,記作一般地,設函數的定義域為,如果存在實數滿足:(1)對于任意的,都有;(2)存在,使得那么,我們稱是函數的最小值,記作1(4)證明函數單調性的一般方法: 定義法:設;作差,判斷正負號用導數證明: 若在某個區間A內有導數,則在A內為增函數;在A內為減函數(5)求單調區間的方法:定義法、導數法、圖象法(6)復合函數在公共
8、定義域上的單調性:若f與g的單調性相同,則為增函數;若f與g的單調性相反,則為減函數注意:先求定義域,單調區間是定義域的子集(7)一些有用的結論: 奇函數在其對稱區間上的單調性相同;偶函數在其對稱區間上的單調性相反; 在公共定義域內:增函數增函數是增函數;減函數減函數是減函數;增函數減函數是增函數;減函數增函數是減函數 函數在上單調遞增;在上是單調遞減【1.3.2】奇偶性定義及判定方法函數的性 質定義圖象判定方法函數的奇偶性如果對于函數f(x)定義域內任意一個x,都有f(x)=f(x),那么函數f(x)叫做奇函數(1)利用定義(要先判斷定義域是否關于原點對稱)(2)利用圖象(圖象關于原點對稱)
9、如果對于函數f(x)定義域內任意一個x,都有f(x)=f(x),那么函數f(x)叫做偶函數(1)利用定義(要先判斷定義域是否關于原點對稱)(2)利用圖象(圖象關于y軸對稱)若奇函數的定義域包含,則為偶函數 奇函數在軸兩側相對稱的區間增減性相同,偶函數在軸兩側相對稱的區間增減性相反在公共定義域內,奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇判斷函數的奇偶性有時可以用定義的等價形式:,函數周期性定義:若T為非零常數,對于定義域內的任一x,使恒成立,則f(x)叫做周期函數,T叫做這個函數的一個周期補充知識函數的圖象(1)作圖利用描點法作圖:確定函數的定義域; 化解函數解析式;討論函數的性質(
10、奇偶性、單調性); 畫出函數的圖象利用基本函數圖象的變換作圖:要準確記憶一次函數、二次函數、反比例函數、指數函數、對數函數、冪函數、三角函數等各種基本初等函數的圖象平移變換伸縮變換 對稱變換 y=f(x) y= -f(x); y=f(x) y=f(-x);y=f(x) y=f(2a-x); y=f(x) y=f-1(x); y=f(x) y= -f(-x)(2)識圖對于給定函數的圖象,要能從圖象的左右、上下分別范圍、變化趨勢、對稱性等方面研究函數的定義域、值域、單調性、奇偶性,注意圖象與函數解析式中參數的關系(3)用圖 函數圖象形象地顯示了函數的性質,為研究數量關系問題提供了“形”的直觀性,它
11、是探求解題途徑,獲得問題結果的重要工具要重視數形結合解題的思想方法第二章 基本初等函數()2.1指數函數【2.1.1】指數與指數冪的運算(1)根式的概念如果,且,那么叫做的次方根當是奇數時,的次方根用符號表示;當是偶數時,正數的正的次方根用符號表示,負的次方根用符號表示;0的次方根是0;負數沒有次方根式子叫做根式,這里叫做根指數,叫做被開方數當為奇數時,為任意實數;當為偶數時,根式的性質:;當為奇數時,;當為偶數時, (2)分數指數冪的概念正數的正分數指數冪的意義是:且0的正分數指數冪等于0正數的負分數指數冪的意義是:且0的負分數指數冪沒有意義 注意口訣:底數取倒數,指數取相反數(3)分數指數
12、冪的運算性質 【2.1.2】指數函數及其性質(4)指數函數函數名稱指數函數定義函數且叫做指數函數圖象0101定義域值域過定點圖象過定點,即當時,奇偶性非奇非偶單調性在上是增函數在上是減函數函數值的變化情況變化對圖象的影響在第一象限內,越大圖象越高;在第二象限內,越大圖象越低2.2對數函數【2.2.1】對數與對數運算(1) 對數的定義 若,則叫做以為底的對數,記作,其中叫做底數,叫做真數負數和零沒有對數對數式與指數式的互化:(2)幾個重要的對數恒等式,(3)常用對數與自然對數常用對數:,即;自然對數:,即(其中)(4)對數的運算性質 如果,那么加法: 減法:數乘: 換底公式:【2.2.2】對數函
13、數及其性質(5)對數函數函數名稱對數函數定義函數且叫做對數函數圖象0101定義域值域過定點圖象過定點,即當時,奇偶性非奇非偶單調性在上是增函數在上是減函數函數值的變化情況變化對圖象的影響在第一象限內,越大圖象越靠低;在第四象限內,越大圖象越靠高(6)反函數的概念設函數的定義域為,值域為,從式子中解出,得式子如果對于在中的任何一個值,通過式子,在中都有唯一確定的值和它對應,那么式子表示是的函數,函數叫做函數的反函數,記作,習慣上改寫成(7)反函數的求法確定反函數的定義域,即原函數的值域;從原函數式中反解出;將改寫成,并注明反函數的定義域 (8)反函數的性質 原函數與反函數的圖象關于直線對稱函數的
14、定義域、值域分別是其反函數的值域、定義域若在原函數的圖象上,則在反函數的圖象上一般地,函數要有反函數則它必須為單調函數2.3冪函數(1)冪函數的定義 一般地,函數叫做冪函數,其中為自變量,是常數(2)冪函數的圖象(3)冪函數的性質圖象分布:冪函數圖象分布在第一、二、三象限,第四象限無圖象冪函數是偶函數時,圖象分布在第一、二象限(圖象關于軸對稱);是奇函數時,圖象分布在第一、三象限(圖象關于原點對稱);是非奇非偶函數時,圖象只分布在第一象限 過定點:所有的冪函數在都有定義,并且圖象都通過點 單調性:如果,則冪函數的圖象過原點,并且在上為增函數如果,則冪函數的圖象在上為減函數,在第一象限內,圖象無
15、限接近軸與軸奇偶性:當為奇數時,冪函數為奇函數,當為偶數時,冪函數為偶函數當(其中互質,和),若為奇數為奇數時,則是奇函數,若為奇數為偶數時,則是偶函數,若為偶數為奇數時,則是非奇非偶函數圖象特征:冪函數,當時,若,其圖象在直線下方,若,其圖象在直線上方,當時,若,其圖象在直線上方,若,其圖象在直線下方補充知識二次函數(1)二次函數解析式的三種形式一般式:頂點式:兩根式:(2)求二次函數解析式的方法已知三個點坐標時,宜用一般式已知拋物線的頂點坐標或與對稱軸有關或與最大(小)值有關時,常使用頂點式若已知拋物線與軸有兩個交點,且橫線坐標已知時,選用兩根式求更方便(3)二次函數圖象的性質二次函數的圖
16、象是一條拋物線,對稱軸方程為頂點坐標是當時,拋物線開口向上,函數在上遞減,在上遞增,當時,;當時,拋物線開口向下,函數在上遞增,在上遞減,當時,二次函數當時,圖象與軸有兩個交點(4)一元二次方程根的分布一元二次方程根的分布是二次函數中的重要內容,這部分知識在初中代數中雖有所涉及,但尚不夠系統和完整,且解決的方法偏重于二次方程根的判別式和根與系數關系定理(韋達定理)的運用,下面結合二次函數圖象的性質,系統地來分析一元二次方程實根的分布 設一元二次方程的兩實根為,且令,從以下四個方面來分析此類問題:開口方向: 對稱軸位置: 判別式: 端點函數值符號 (5)二次函數在閉區間上的最值 設在區間上的最大
17、值為,最小值為,令()當時(開口向上)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)xy0>aOabx2-=pqf(p)f(q)若,則 若,則 若,則xy0>aOabx2-=pqf(p)f(q)若,則 ,則xy0>aOabx2-=pqf(p)f(q)()當時(開口向下)xy0<aOabx2-=pqf(p)f(q)若,則 若,則 若,則xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)若,則 ,則xy0<aOabx2-=pqf(p)f(q)xy0<aOabx2-=pqf(p)f(q)第三章 函數的應用一、方程的根與函數的零點1、函數零點的概念:對于函數,把使成立的實數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 口腔健康宣導課件
- 文化創意產業園區品牌塑造策略研究-2025年產業集聚背景下的創新實踐
- 小學生知識講座課件
- 優撫資金使用管理辦法
- 企業生產人員管理辦法
- 保險新人出勤管理辦法
- 中鐵隧道安全管理辦法
- 乙醇燃料流通管理辦法
- 企業調取印模管理辦法
- 工業互聯網平臺數據備份與恢復策略:工業4.0數據安全防護指南
- 一鋼軋煉鋼區2#轉爐軸承更換
- 個人所得稅專項附加扣除及個人所得稅計算培訓
- CSC-300系列發變組保護調試說明
- 輔導員基礎知識試題及答案
- 火龍罐技術課件
- 輸水管道施工監理實施細則
- 關于個人現實表現材料德能勤績廉【六篇】
- 【吊車租賃合同范本】吊車租賃合同
- 電梯井道腳手架施工方案
- 《游戲力養育》讀書筆記PPT模板思維導圖下載
- 琦君散文-專業文檔
評論
0/150
提交評論