




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.去年某市7月1日到7日的每一天最高氣溫變化如折線圖所示,則關于這組數據的描述正確的是()A.最低溫度是32℃ B.眾數是35℃ C.中位數是34℃ D.平均數是33℃2.由一些大小相同的小正方體組成的幾何體的俯視圖如圖所示,其中正方形中的數字表示在該位置上的小正方體的個數,那么,這個幾何體的左視圖是()A. B. C. D.3.在一次數學答題比賽中,五位同學答對題目的個數分別為7,5,3,5,10,則關于這組數據的說法不正確的是()A.眾數是5 B.中位數是5 C.平均數是6 D.方差是3.64.如果,那么代數式的值是()A.6 B.2 C.-2 D.-65.關于x的一元二次方程x2+3x+m=0有兩個不相等的實數根,則A.m≤94B.m<946.的相反數是()A.6 B.-6 C. D.7.如圖,AB是⊙O的弦,半徑OC⊥AB于D,若CD=2,⊙O的半徑為5,那么AB的長為()A.3 B.4 C.6 D.88.下列各式中計算正確的是A. B. C. D.9.如圖,在△ABC中,點D在AB邊上,DE∥BC,與邊AC交于點E,連結BE,記△ADE,△BCE的面積分別為S1,S2,()A.若2AD>AB,則3S1>2S2 B.若2AD>AB,則3S1<2S2C.若2AD<AB,則3S1>2S2 D.若2AD<AB,則3S1<2S210.如圖,正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,CH┴AF與點H,那么CH的長是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.月球的半徑約為1738000米,1738000這個數用科學記數法表示為___________.12.《孫子算經》是中國古代重要的數學著作,成書于約一千五百年前,其中有首歌謠:“今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問竿長幾何?”意思就是:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時立一根一尺五寸的小標桿(如圖所示),它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為_____.13.某物流倉儲公司用如圖A,B兩種型號的機器人搬運物品,已知A型機器人比B型機器人每小時多搬運20kg,A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等,設B型機器人每小時搬運xkg物品,列出關于x的方程為_____.14.觀察下列一組數,,,,,…探究規律,第n個數是_____.15.若實數a、b在數軸上的位置如圖所示,則代數式|b﹣a|+化簡為_____.16.如圖,在⊙O中,直徑AB⊥弦CD,∠A=28°,則∠D=_______.三、解答題(共8題,共72分)17.(8分)如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點,以P為圓心,PB為半徑的⊙P與邊BC的另一個交點為D,聯結PD、AD.(1)求△ABC的面積;(2)設PB=x,△APD的面積為y,求y關于x的函數關系式,并寫出定義域;(3)如果△APD是直角三角形,求PB的長.18.(8分)如圖,點A,C,B,D在同一條直線上,BE∥DF,∠A=∠F,AB=FD,求證:AE=FC.19.(8分)某運動品牌對第一季度A、B兩款運動鞋的銷售情況進行統計,兩款運動鞋的銷售量及總銷售額如圖6所示.1月份B款運動鞋的銷售量是A款的4520.(8分)某校為了解學生對籃球、足球、排球、羽毛球、乒乓球這五種球類運動的喜愛情況,隨機抽取一部分學生進行問卷調查,統計整理并繪制了以下兩幅不完整的統計圖:請根據以上統計圖提供的信息,解答下列問題:(1)共抽取名學生進行問卷調查;(2)補全條形統計圖,求出扇形統計圖中“足球”所對應的圓心角的度數;(3)該校共有3000名學生,請估計全校學生喜歡足球運動的人數.(4)甲乙兩名學生各選一項球類運動,請求出甲乙兩人選同一項球類運動的概率.21.(8分)直角三角形ABC中,,D是斜邊BC上一點,且,過點C作,交AD的延長線于點E,交AB延長線于點F.求證:;若,,過點B作于點G,連接依題意補全圖形,并求四邊形ABGD的面積.22.(10分)在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經過點E,且交BC于點F.(1)求證:AC是⊙O的切線;(2)若BF=6,⊙O的半徑為5,求CE的長.23.(12分)計算:2-1+20160-3tan30°+|-|24.中華文化,源遠流長,在文學方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某中學為了了解學生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學生中進行了抽樣調查,根據調查結果繪制成如圖所示的兩個不完整的統計圖,請結合圖中信息解決下列問題:(1)本次調查了名學生,扇形統計圖中“1部”所在扇形的圓心角為度,并補全條形統計圖;(2)此中學共有1600名學生,通過計算預估其中4部都讀完了的學生人數;(3)沒有讀過四大古典名著的兩名學生準備從四大固定名著中各自隨機選擇一部來閱讀,求他們選中同一名著的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】分析:將數據從小到大排列,由中位數及眾數、平均數的定義,可得出答案.詳解:由折線統計圖知這7天的氣溫從低到高排列為:31、32、33、33、33、34、35,所以最低氣溫為31℃,眾數為33℃,中位數為33℃,平均數是=33℃.故選D.點睛:本題考查了眾數、中位數的知識,解答本題的關鍵是由折線統計圖得到最高氣溫的7個數據.2、A【解析】從左面看,得到左邊2個正方形,中間3個正方形,右邊1個正方形.故選A.3、D【解析】
根據平均數、中位數、眾數以及方差的定義判斷各選項正誤即可.【詳解】A、數據中5出現2次,所以眾數為5,此選項正確;B、數據重新排列為3、5、5、7、10,則中位數為5,此選項正確;C、平均數為(7+5+3+5+10)÷5=6,此選項正確;D、方差為×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此選項錯誤;故選:D.【點睛】本題主要考查了方差、平均數、中位數以及眾數的知識,解答本題的關鍵是熟練掌握各個知識點的定義以及計算公式,此題難度不大.4、A【解析】【分析】將所求代數式先利用單項式乘多項式法則、平方差公式進行展開,然后合并同類項,最后利用整體代入思想進行求值即可.【詳解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故選A.【點睛】本題考查了代數式求值,涉及到單項式乘多項式、平方差公式、合并同類項等,利用整體代入思想進行解題是關鍵.5、B【解析】試題分析:根據題意得△=32﹣4m>0,解得m<94故選B.考點:根的判別式.點睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數)的根的判別式△=b2-4ac.當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.6、D【解析】
根據相反數的定義解答即可.【詳解】根據相反數的定義有:的相反數是.故選D.【點睛】本題考查了相反數的意義,一個數的相反數就是在這個數前面添上“﹣”號;一個正數的相反數是負數,一個負數的相反數是正數,1的相反數是1.7、D【解析】
連接OA,構建直角三角形AOD;利用垂徑定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的長度,從而求得AB=2AD=1.【詳解】連接OA.∵⊙O的半徑為5,CD=2,∵OD=5-2=3,即OD=3;又∵AB是⊙O的弦,OC⊥AB,∴AD=AB;在直角三角形ODC中,根據勾股定理,得AD==4,∴AB=1.故選D.【點睛】本題考查了垂徑定理、勾股定理.解答該題的關鍵是通過作輔助線OA構建直角三角形,在直角三角形中利用勾股定理求相關線段的長度.8、B【解析】
根據完全平方公式對A進行判斷;根據冪的乘方與積的乘方對B、C進行判斷;根據合并同類項對D進行判斷.【詳解】A.,故錯誤.B.,正確.C.,故錯誤.D.,故錯誤.故選B.【點睛】考查完全平方公式,合并同類項,冪的乘方與積的乘方,熟練掌握它們的運算法則是解題的關鍵.9、D【解析】
根據題意判定△ADE∽△ABC,由相似三角形的面積之比等于相似比的平方解答.【詳解】∵如圖,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若1AD>AB,即時,,此時3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能確定3S1與1S1的大小,故選項A不符合題意,選項B不符合題意.若1AD<AB,即時,,此時3S1<S1+S△BDE<1S1,故選項C不符合題意,選項D符合題意.故選D.【點睛】考查了相似三角形的判定與性質,三角形相似的判定一直是中考考查的熱點之一,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.10、D【解析】
連接AC、CF,根據正方形性質求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點睛】本題考查了正方形的性質、勾股定理及直角三角形的面積,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.738×1【解析】
解:將1738000用科學記數法表示為1.738×1.故答案為1.738×1.【點睛】本題考查科學記數法—表示較大的數,掌握科學計數法的計數形式,難度不大.12、四丈五尺【解析】
根據同一時刻物高與影長成正比可得出結論.【詳解】解:設竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴=,解得x=45(尺).故答案為:四丈五尺.【點睛】本題考查的是相似三角形的應用,熟知同一時刻物髙與影長成正比是解答此題的關鍵.13、【解析】
設B型機器人每小時搬運x
kg物品,則A型機器人每小時搬運(x+20)kg物品,根據“A型機器人搬運1000kg所用時間與B型機器人搬運800kg所用時間相等”可列方程.【詳解】設B型機器人每小時搬運x
kg物品,則A型機器人每小時搬運(x+20)kg物品,根據題意可得,故答案為.【點睛】本題考查了由實際問題抽象出分式方程,解題的關鍵是根據數量關系列出關于x的分式方程.本題屬于基礎題,難度不大,解決該題型題目時,根據數量關系列出方程是關鍵.14、【解析】
根據已知得出數字分母與分子的變化規律,分子是連續的正整數,分母是連續的奇數,進而得出第n個數分子的規律是n,分母的規律是2n+1,進而得出這一組數的第n個數的值.【詳解】解:因為分子的規律是連續的正整數,分母的規律是2n+1,
所以第n個數就應該是:,
故答案為.【點睛】此題主要考查了數字變化規律,這類題型在中考中經常出現.對于找規律的題目首先應找出哪些部分發生了變化,是按照什么規律變化的.解題的關鍵是把數據的分子分母分別用組數n表示出來.15、2a﹣b.【解析】
直接利用數軸上a,b的位置進而得出b﹣a<0,a>0,再化簡得出答案.【詳解】解:由數軸可得:b﹣a<0,a>0,則|b﹣a|+=a﹣b+a=2a﹣b.故答案為2a﹣b.【點睛】此題主要考查了二次根式的性質與化簡,正確得出各項符號是解題關鍵.16、34°【解析】分析:首先根據垂徑定理得出∠BOD的度數,然后根據三角形內角和定理得出∠D的度數.詳解:∵直徑AB⊥弦CD,∴∠BOD=2∠A=56°,∴∠D=90°-56°=34°.點睛:本題主要考查的是圓的垂徑定理,屬于基礎題型.求出∠BOD的度數是解題的關鍵.三、解答題(共8題,共72分)17、(1)12(2)y=(0<x<5)(3)或【解析】試題分析:(1)過點A作AH⊥BC于點H,根據cosB=求得BH的長,從而根據已知可求得AH的長,BC的長,再利用三角形的面積公式即可得;(2)先證明△BPD∽△BAC,得到=,再根據,代入相關的量即可得;(3)分情況進行討論即可得.試題解析:(1)過點A作AH⊥BC于點H,則∠AHB=90°,∴cosB=,∵cosB=,AB=5,∴BH=4,∴AH=3,∵AB=AC,∴BC=2BH=8,∴S△ABC=×8×3=12(2)∵PB=PD,∴∠B=∠PDB,∵AB=AC,∴∠B=∠C,∴∠C=∠PDB,∴△BPD∽△BAC,∴,即,解得=,∴,∴,解得y=(0<x<5);(3)∠APD<90°,過C作CE⊥AB交BA延長線于E,可得cos∠CAE=,①當∠ADP=90°時,cos∠APD=cos∠CAE=,即,解得x=;②當∠PAD=90°時,,解得x=,綜上所述,PB=或.【點睛】本題考查了相似三角形的判定與性質、底在同一直線上且高相等的三角形面積的關系等,結合圖形及已知選擇恰當的知識進行解答是關鍵.18、證明見解析.【解析】由已知條件BE∥DF,可得出∠ABE=∠D,再利用ASA證明△ABE≌△FDC即可.證明:∵BE∥DF,∴∠ABE=∠D,在△ABE和△FDC中,∠ABE=∠D,AB=FD,∠A=∠F∴△ABE≌△FDC(ASA),∴AE=FC.“點睛”此題主要考查全等三角形的判定與性質和平行線的性質等知識點的理解和掌握,此題的關鍵是利用平行線的性質求證△ABC和△FDC全等.19、(1)1月份B款運動鞋銷售了40雙;(2)3月份的總銷售額為39000元;(3)詳見解析.【解析】試題分析:(1)用一月份A款的數量乘以45試題解析:(1)根據題意,用一月份A款的數量乘以45:50×45=40(雙).即一月份B款運動鞋銷售了40雙;(2)設A,B兩款運動鞋的銷量單價分別為x元,y元,根據題意得:50x+40y=4000060x+52y=50000考點:1.折線統計圖;2.條形統計圖.20、(1)1;(2)詳見解析;(3)750;(4).【解析】
(1)用排球的人數÷排球所占的百分比,即可求出抽取學生的人數;(2)足球人數=學生總人數-籃球的人數-排球人數-羽毛球人數-乒乓球人數,即可補全條形統計圖;(3)計算足球的百分比,根據樣本估計總體,即可解答;(4)利用概率公式計算即可.【詳解】(1)30÷15%=1(人).答:共抽取1名學生進行問卷調查;故答案為1.(2)足球的人數為:1﹣60﹣30﹣24﹣36=50(人),“足球球”所對應的圓心角的度數為360°×0.25=90°.如圖所示:(3)3000×0.25=750(人).答:全校學生喜歡足球運動的人數為750人.(4)畫樹狀圖為:(用A、B、C、D、E分別表示籃球、足球、排球、羽毛球、乒乓球的五張卡片)共有25種等可能的結果數,選同一項目的結果數為5,所以甲乙兩人中有且選同一項目的概率P(A)=.【點睛】本題主要考查了條形統計圖,扇形統計圖以及用樣本估計總體的應用,解題時注意:從扇形圖上可以清楚地看出各部分數量和總數量之間的關系.一般來說,用樣本去估計總體時,樣本越具有代表性、容量越大,這時對總體的估計也就越精確.21、(1)證明見解析;(2)補圖見解析;.【解析】
根據等腰三角形的性質得到,等量代換得到,根據余角的性質即可得到結論;根據平行線的判定定理得到AD∥BG,推出四邊形ABGD是平行四邊形,得到平行四邊形ABGD是菱形,設AB=BG=GD=AD=x,解直角三角形得到,過點B作于H,根據平行四邊形的面積公式即可得到結論.【詳解】解:,,,,,,,,;補全圖形,如圖所示:,,,,,,,,,且,,,,四邊形ABGD是平行四邊形,,平行四邊形ABGD是菱形,設,,,,過點B作于H,..故答案為(1)證明見解析;(2)補圖見解析;.【點睛】本題考查等腰三角形的性質,平行四邊形的判定和性質,菱形的判定和性質,解題的關鍵是正確的作出輔助線.22、(1)證明見解析;(2)CE=1.【解析】
(1)根據等角對等邊得∠OBE=∠OEB,由角平分線的定義可得∠OBE=∠EBC,從而可得∠OEB=∠EBC,根據內錯角相等,兩直線平行可得OE∥BC,根據兩直線平行,同位角相等可得∠OEA=90°,從而可證AC是⊙O的切線.
(2)根據垂徑定理可求BH=BF=3,根據三個角是直角的四邊形是矩形,可得四邊形OHCE是矩形,由矩形的對邊相等可得CE=OH,在Rt△OBH中,利用勾股定理可求出OH的長,從而求出CE的長.【詳解】(1)證明:如圖,連接OE,
∵OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC.
∴∠OBE=∠EBC,
∴∠OEB=∠EBC,
∴OE∥BC,
∵∠ACB=90°,
∴∠OEA=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲加盟店經營管理規范合同
- 城市更新中的不動產登記專題學習
- 大學空中面試題庫及答案
- 美術教學色彩課件
- 心力衰竭培訓課件
- 關于安全的合理化建議
- 衛生院安全生產月活動開展情況
- 重慶市安全生產條例
- 村里安全生產排查
- 北京交警事故處理電話
- translated-NCCN臨床實踐指南:非小細胞肺癌(中文版2022.V5)
- 衛生部手術分級目錄(2023年1月份修訂)
- LY/T 2121-2013檀香栽培技術規程
- GB/T 8312-2002茶咖啡堿測定
- 護士注冊健康體檢表下載【可直接打印版本】
- 預計財務報表編制及分析課件
- 骨科出科試題帶答案
- 河道基槽土方開挖專項施工方案
- 現代美國玉米商業育種的種質基礎概要
- GB∕T 4162-2022 鍛軋鋼棒超聲檢測方法
- 中醫治療室工作制度管理辦法
評論
0/150
提交評論