省直轄縣級行政區劃天門市馬灣鎮馬灣中心中學2019-2020學年高二數學文下學期期末試卷含解析_第1頁
省直轄縣級行政區劃天門市馬灣鎮馬灣中心中學2019-2020學年高二數學文下學期期末試卷含解析_第2頁
省直轄縣級行政區劃天門市馬灣鎮馬灣中心中學2019-2020學年高二數學文下學期期末試卷含解析_第3頁
免費預覽已結束,剩余2頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、省直轄縣級行政區劃天門市馬灣鎮馬灣中心中學2019-2020學年高二數學文下學期期末試卷含解析一、 選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1. 已知斜率為1的直線與曲線相切于點,則點的坐標是( )A. B. C.或 D.參考答案:C略2. 用,表示三條不同的直線,表示平面,給出下列命題:若,則; 若,則;若,則; 若,則.其中真命題的序號是 ( )A、 B、 C、 D、參考答案:C3. 設點,則“且”是“點在直線上”的( )A充分而不必要條件 B. 必要而不充分條件C充分必要條件D. 既不充分也不必要條件參考答案:A4. “”是“”的

2、()A充分不必要條件 B必要不充分條件 C充要條件 D既不充分也不必要條件參考答案:A5. 設f(x)=,則f(x)dx等于()Acos1Bcos1C +cos1D +cos1參考答案:B【考點】定積分【分析】根據分段函數的積分公式和性質,即可得到結論【解答】解: f(x)dx=sinxdx+x2dx=cosx|+|=1cos1+=cos1,故選:B6. 在ABC中,已知sin(AB)cos Bcos(AB)sin B1,則ABC是() A直角三角形 B銳角三角形 C鈍角三角形 D等邊三角形參考答案:A7. 已知過定點的直線與拋物線交于兩點,且,為坐標原點,則該直線的方程為A、 B、 C、D、

3、參考答案:D略8. 設集合I1,2,3,4,5,選擇I的兩個非空子集A和B,要使B中最小的數大于A中最大的數,則不同選擇方法共有( )種A50 B49 C48 D47參考答案:B略9. 兩平行直線與之間的距離為 A B C. 1 D. 參考答案:C10. 已知等差數列an的前n項和為Sn,是方程的兩根,則( )A. 5B. 10C. 15D. 20參考答案:B【分析】由韋達定理結合等差數列的性質可得,再利用等差數列的求和公式可得結果.【詳解】因為,是方程的兩根,所以,可得,所以,故選B.【點睛】本題主要考查等差數列的性質以及等差數列的求和公式,屬于基礎題. 解等差數列問題要注意應用等差數列的性

4、質()與前 項和的關系.二、 填空題:本大題共7小題,每小題4分,共28分11. 已知f(x)=x+ln(x+1),那么f(0)=_ 參考答案:2【考點】導數的運算【解析】【解答】解:根據題意,f(x)=x+ln(x+1), 則其導數f(x)=1+ ,則f(0)=1+1=2;故答案為:2【分析】根據題意,對函數f(x)求導可得f(x)的解析式,將x=0代入即可得答案 12. 命題:“?x1,x21”的否定是參考答案:?x1,x21【考點】命題的否定【分析】直接利用特稱命題的否定是全稱命題寫出結果即可【解答】解:因為特稱命題的否定是全稱命題,所以,命題:“?x1,x21”的否定是?x1,x21;

5、故答案為:?x1,x2113. 已知等差數列中,,將此等差數列的各項排成如下三角形數陣: 則此數陣中第20行從左到右的第10個數是_參考答案:598略14. 直線x2y+3=0與橢圓相交于A,B兩點,且P(1,1)恰好為AB中點,則橢圓的離心率為參考答案:【考點】橢圓的簡單性質【分析】聯立直線與橢圓的方程得關于x的一元二次方程;設出A、B兩點的坐標,由根與系數的關系,可得x1+x2,y1+y2;從而得線段AB的中點坐標,得出a、c的關系,從而求得橢圓的離心率【解答】解:由,消去x,得(4b2+a2)x212b2x+9b2a2b2=0,=144b44(a2+4b2)(9b2a2b2)0?a2+4

6、b29,設A(x1,y1),B(x2,y2),則y1+y2=,線段AB的中點為(1,1),=2,于是得a2=2b2,又a2=b2+c2,a2=2c2,e=故答案為:15. 橢圓被直線截得的弦長為_參考答案:16. 觀察下圖:則第_行的各數之和等于.參考答案:1009分析:首先根據所給數字的排列及變化規律得到,第行各數構成一個首項為,公差為,共項的等差數列;再根據等差數列的前項和公式得到,將代入公式即可求出的值.詳解:由題設題知,第一行各數和為;第二行各數和為;第三行各數和為;第四行各數和為第行各數和為,令,解得,故答案為.點睛:歸納推理的一般步驟:通過觀察個別情況發現某些相同的性質.從已知的相

7、同性質中推出一個明確表述的一般性命題(猜想),由歸納推理所得的結論雖然未必是可靠的,但它由特殊到一般,由具體到抽象的認識功能,對科學的發現十分有用,觀察、實驗、對有限的資料作歸納整理,提出帶規律性的說法是科學研究的最基本的方法之一.17. 三角形的一邊長為14,這條邊所對的角為60,另兩邊之比為8:5,則這個三角形的面積為參考答案:考點: 三角形中的幾何計算專題: 解三角形分析: 設另兩邊分別為8k 和5k,由余弦定理可求得 k=2,故另兩邊分別為 16和10,故這個三角形的面積為 1610sin60,計算求得結果解答: 解:設另兩邊分別為8k 和5k,由余弦定理可得 142=64k2+25k

8、280k2cos60,k=2,故另兩邊分別為 16和10,故這個三角形的面積為 1610sin60=,故答案為:點評: 本題考查余弦定理的應用,三角形的面積公式,求出 k=2 是解題的關鍵,屬于中檔題三、 解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18. 已知數列滿足=1,=,(1)計算,的值;(2)歸納推測,并用數學歸納法證明你的推測. (7分)參考答案:解:(1)a1=1,an+1=,a2= a3=,a4= (2)推測an= 證明:1當n=1時,由(1)已知,推測成立。 2假設當n=k時,推測成立,即ak= 則當n=k+1時,ak+1=這說明,當n=k+1時,

9、推測成立。 綜上1、2,知對一切自然數n,均有an= 略19. 設復數z=(a24sin2)+2(1+cos)i, 其中aR,(0,),i為虛數單位,若z是方程x22x+2=0的一個根,且z在復平面內對應的點在第一象限,求與a的值。參考答案:由題意得z=1+i a=20. 某籃球賽甲、乙兩隊進入最后決賽,其中甲隊有6名打前鋒位,4名打后位,另有2名既能打前鋒位又能打后位的全能型隊員;乙隊有4名打前鋒位,3名打后位,另有5名既能打前鋒位又能打后位的全能型隊員。問:(1)甲隊有多少種不同的出場陣容?(2)乙隊又有多少種不同的出場陣容?(注:每種出場陣容中含3名前鋒位和2名后位)參考答案:(1)甲隊

10、按全能隊員出場人數分類:I不選全能隊員:II選1名全能隊員:III選2名全能隊員:故甲隊共有120+340+176=636種不同的出場陣容。 (6分)(2)乙隊按3名只會打后場的出場人數分類: I不選: II選1名: III選2名:故乙隊共有350+840+252=1442種不同的出場陣容。 (13分)21. 如圖,在棱錐PABCD中,平面PAD平面ABCD,PAPD,PAPD,ABAD,AD2,ACCD(1) 求證:PD平面PAB;(2) 求直線PB與平面PCD所成角的正弦值參考答案:()因為平面PAD平面ABCD,ABAD,所以AB平面PAD所以ABPD又因為PAPD,所以PD平面PAB5

11、分()取AD的中點O,連結PO,CO因為PAPD,所以POAD又因為PO?平面PAD,平面PADABCD,所以PO平面ABCD因為CO?平面ABCD,所以POCO因為ACCD,所以COAD如圖建立空間直角坐標系,由題意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,1,0),P(0,0,1)22. (14分)已知ABC的頂點A(1,3),AB邊上的中線所在直線的方程是y=1,AC邊上的高所在直線的方程是x2y+1=0求(1)AC邊所在直線的方程;(2)AB邊所在直線的方程參考答案:【考點】直線的一般式方程 【專題】計算題【分析】(1)根據AC邊的高所在的直線方程,設出AC所在的直線方程,再代入點A的坐標,求參數即可(2)由中點坐標公式表示出點B的坐標,再根據點B在AC的高線上,可求出中點坐標,從而可確定直線AB的斜率,又由點A的坐標,即可表示出直線的方程【解答】解:(1)由題意,直線x2y+1=0的一個法向量(1,2)是AC邊所在直線的一個方向向量可設AC所在的直線方程為:2x+y+c=0又點A的坐標為(1,3)21+3+c=0c=5AC所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論