湖北省襄陽市宜城市重點中學2024屆十校聯考最后數學試題含解析_第1頁
湖北省襄陽市宜城市重點中學2024屆十校聯考最后數學試題含解析_第2頁
湖北省襄陽市宜城市重點中學2024屆十校聯考最后數學試題含解析_第3頁
湖北省襄陽市宜城市重點中學2024屆十校聯考最后數學試題含解析_第4頁
湖北省襄陽市宜城市重點中學2024屆十校聯考最后數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省襄陽市宜城市重點中學2024年十校聯考最后數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.中國古代在利用“計里畫方”(比例縮放和直角坐標網格體系)的方法制作地圖時,會利用測桿、水準儀和照板來測量距離.在如圖所示的測量距離AB的示意圖中,記照板“內芯”的高度為EF,觀測者的眼睛(圖中用點C表示)與BF在同一水平線上,則下列結論中,正確的是()A. B. C. D.2.如圖,小正方形邊長均為1,則下列圖形中三角形(陰影部分)與△ABC相似的是A. B. C. D.3.如圖,已知線段AB,分別以A,B為圓心,大于AB為半徑作弧,連接弧的交點得到直線l,在直線l上取一點C,使得∠CAB=25°,延長AC至點M,則∠BCM的度數為()A.40° B.50° C.60° D.70°4.如圖,△ABC中,∠CAB=65°,在同一平面內,將△ABC繞點A旋轉到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°5.如圖,已知,用尺規作圖作.第一步的作法以點為圓心,任意長為半徑畫弧,分別交,于點,第二步的作法是()A.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點B.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點C.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點D.以點為圓心,長為半徑畫弧,與第1步所畫的弧相交于點6.如果a﹣b=5,那么代數式(﹣2)?的值是()A.﹣ B. C.﹣5 D.57.如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于()A. B.2 C.4 D.38.已知關于x的方程x2+3x+a=0有一個根為﹣2,則另一個根為()A.5 B.﹣1 C.2 D.﹣59.如下字體的四個漢字中,是軸對稱圖形的是()A. B. C. D.10.如圖,在△ABC中,點D在AB邊上,DE∥BC,與邊AC交于點E,連結BE,記△ADE,△BCE的面積分別為S1,S2,()A.若2AD>AB,則3S1>2S2 B.若2AD>AB,則3S1<2S2C.若2AD<AB,則3S1>2S2 D.若2AD<AB,則3S1<2S2二、填空題(本大題共6個小題,每小題3分,共18分)11.解不等式組請結合題意填空,完成本題的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在數軸上表示出來:(Ⅳ)原不等式組的解集為.12.某種商品兩次降價后,每件售價從原來100元降到81元,平均每次降價的百分率是__________.13.如圖,矩形ABCD的對角線BD經過的坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數y=的圖象上,若點A的坐標為(﹣2,﹣3),則k的值為_____.14.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將△ABE沿AE折疊,使點B落在矩形內點F處,連接CF,則CF的長度為_____15.如圖,在△ABC中,AB=AC,AH⊥BC,垂足為點H,如果AH=BC,那么sin∠BAC的值是____.16.為迎接文明城市的驗收工作,某居委會組織兩個檢查組,分別對“垃圾分類”和“違規停車”的情況進行抽查.各組隨機抽取轄區內某三個小區中的一個進行檢查,則兩個組恰好抽到同一個小區的概率是_____.三、解答題(共8題,共72分)17.(8分)如圖①,有兩個形狀完全相同的直角三角形ABC和EFG疊放在一起(點A與點E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜邊上的中點.

如圖②,若整個△EFG從圖①的位置出發,以1cm/s的速度沿射線AB方向平移,在△EFG平移的同時,點P從△EFG的頂點G出發,以1cm/s的速度在直角邊GF上向點F運動,當點P到達點F時,點P停止運動,△EFG也隨之停止平移.設運動時間為x(s),FG的延長線交AC于H,四邊形OAHP的面積為y(cm2)(不考慮點P與G、F重合的情況).

(1)當x為何值時,OP∥AC;

(2)求y與x之間的函數關系式,并確定自變量x的取值范圍;

(3)是否存在某一時刻,使四邊形OAHP面積與△ABC面積的比為13:24?若存在,求出x的值;若不存在,說明理由.(參考數據:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)18.(8分)2013年6月,某中學結合廣西中小學閱讀素養評估活動,以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調查,收集整理數據后,繪制出以下兩幅未完成的統計圖,請根據圖1和圖2提供的信息,解答下列問題:在這次抽樣調查中,一共調查了多少名學生?請把折線統計圖(圖1)補充完整;求出扇形統計圖(圖2)中,體育部分所對應的圓心角的度數;如果這所中學共有學生1800名,那么請你估計最喜愛科普類書籍的學生人數.19.(8分)某校為了解學生體質情況,從各年級隨機抽取部分學生進行體能測試,每個學生的測試成績按標準對應為優秀、良好、及格、不及格四個等級,統計員在將測試數據繪制成圖表時發現,優秀漏統計4人,良好漏統計6人,于是及時更正,從而形成如圖圖表,請按正確數據解答下列各題:學生體能測試成績各等次人數統計表體能等級調整前人數調整后人數優秀8良好16及格12不及格4合計40(1)填寫統計表;(2)根據調整后數據,補全條形統計圖;(3)若該校共有學生1500人,請你估算出該校體能測試等級為“優秀”的人數.20.(8分)先化簡,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.21.(8分)已知關于x的方程(a﹣1)x2+2x+a﹣1=1.若該方程有一根為2,求a的值及方程的另一根;當a為何值時,方程的根僅有唯一的值?求出此時a的值及方程的根.22.(10分)某公司為了擴大經營,決定購進6臺機器用于生產某活塞.現有甲、乙兩種機器供選擇,其中每種機器的價格和每臺機器日生產活塞的數量如下表所示.經過預算,本次購買機器所耗資金不能超過34萬元.甲乙價格(萬元/臺)75每臺日產量(個)10060(1)按該公司要求可以有幾種購買方案?如果該公司購進的6臺機器的日生產能力不能低于380個,那么為了節約資金應選擇什么樣的購買方案?23.(12分)某超市預測某飲料有發展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數量是第一批的3倍,但單價比第一批貴2元.第一批飲料進貨單價多少元?若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?24.某商場經營某種品牌的玩具,購進時的單價是30元,根據市場調查:在一段時間內,銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.不妨設該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結果填寫在表格中:銷售單價(元)x銷售量y(件)銷售玩具獲得利潤w(元)(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應定為多少元.在(1)問條件下,若玩具廠規定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務,求商場銷售該品牌玩具獲得的最大利潤是多少?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解題分析】分析:由平行得出相似,由相似得出比例,即可作出判斷.詳解:∵EF∥AB,∴△CEF∽△CAB,∴,故選B.點睛:本題考查了相似三角形的應用,熟練掌握相似三角形的判定與性質是解答本題的關鍵.2、B【解題分析】

根據網格的特點求出三角形的三邊,再根據相似三角形的判定定理即可求解.【題目詳解】已知給出的三角形的各邊AB、CB、AC分別為、2、、只有選項B的各邊為1、、與它的各邊對應成比例.故選B.【點晴】此題主要考查相似三角形的判定,解題的關鍵是熟知相似三角形的判定定理.3、B【解題分析】

解:∵由作法可知直線l是線段AB的垂直平分線,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故選B.4、C【解題分析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點A旋轉到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點:1.面動旋轉問題;2.平行線的性質;3.旋轉的性質;4.等腰三角形的性質.5、D【解題分析】

根據作一個角等于已知角的作法即可得出結論.【題目詳解】解:用尺規作圖作∠AOC=2∠AOB的第一步是以點O為圓心,以任意長為半徑畫弧①,分別交OA、OB于點E、F,

第二步的作圖痕跡②的作法是以點F為圓心,EF長為半徑畫弧.

故選:D.【題目點撥】本題考查的是作圖-基本作圖,熟知作一個角等于已知角的步驟是解答此題的關鍵.6、D【解題分析】【分析】先對括號內的進行通分,進行分式的加減法運算,然后再進行分式的乘除法運算,最后把a-b=5整體代入進行求解即可.【題目詳解】(﹣2)?===a-b,當a-b=5時,原式=5,故選D.7、B【解題分析】【分析】依據點C在雙曲線y=上,AC∥y軸,BC∥x軸,可設C(a,),則B(3a,),A(a,),依據AC=BC,即可得到﹣=3a﹣a,進而得出a=1,依據C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,進而得到Rt△ABC中,AB=2.【題目詳解】點C在雙曲線y=上,AC∥y軸,BC∥x軸,設C(a,),則B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(負值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故選B.【題目點撥】本題主要考查了反比例函數圖象上點的坐標特征,注意反比例函數圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.8、B【解題分析】

根據關于x的方程x2+3x+a=0有一個根為-2,可以設出另一個根,然后根據根與系數的關系可以求得另一個根的值,本題得以解決.【題目詳解】∵關于x的方程x2+3x+a=0有一個根為-2,設另一個根為m,

∴-2+m=?,

解得,m=-1,

故選B.9、A【解題分析】試題分析:根據軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據此可知,A為軸對稱圖形.故選A.考點:軸對稱圖形10、D【解題分析】

根據題意判定△ADE∽△ABC,由相似三角形的面積之比等于相似比的平方解答.【題目詳解】∵如圖,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若1AD>AB,即時,,此時3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能確定3S1與1S1的大小,故選項A不符合題意,選項B不符合題意.若1AD<AB,即時,,此時3S1<S1+S△BDE<1S1,故選項C不符合題意,選項D符合題意.故選D.【題目點撥】考查了相似三角形的判定與性質,三角形相似的判定一直是中考考查的熱點之一,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.二、填空題(本大題共6個小題,每小題3分,共18分)11、詳見解析.【解題分析】

先根據不等式的性質求出每個不等式的解集,再在數軸上表示出來,根據數軸找出不等式組公共部分即可.【題目詳解】(Ⅰ)解不等式①,得:x<1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在數軸上表示出來:(Ⅳ)原不等式組的解集為:﹣1≤x<1,故答案為:x<1、x≥﹣1、﹣1≤x<1.【題目點撥】本題考查了解一元一次不等式組的概念.12、10%【解題分析】

設降價的百分率為x,則第一次降價后的單價是原來的(1?x),第二次降價后的單價是原來的(1?x)2,根據題意列方程解答即可.【題目詳解】解:設降價的百分率為x,根據題意列方程得:100×(1?x)2=81解得x1=0.1,x2=1.9(不符合題意,舍去).所以降價的百分率為0.1,即10%.故答案為:10%.【題目點撥】本題考查了一元二次方程的應用.找到關鍵描述語,根據等量關系準確的列出方程是解決問題的關鍵.還要判斷所求的解是否符合題意,舍去不合題意的解.13、1或﹣1【解題分析】

根據矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據反比例函數比例系數的幾何意義即可求出k2+4k+1=6,再解出k的值即可.【題目詳解】如圖:∵四邊形ABCD、HBEO、OECF、GOFD為矩形,又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四邊形CEOF=S四邊形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案為1或﹣1.【題目點撥】本題考查了反比例函數k的幾何意義、矩形的性質、一元二次方程的解法,解題的關鍵是判斷出S四邊形CEOF=S四邊形HAGO.14、【解題分析】

分析題意,如圖所示,連接BF,由翻折變換可知,BF⊥AE,BE=EF,由點E是BC的中點可知BE=3,根據勾股定理即可求得AE;根據三角形的面積公式可求得BH,進而可得到BF的長度;結合題意可知FE=BE=EC,進而可得∠BFC=90°,至此,在Rt△BFC中,利用勾股定理求出CF的長度即可【題目詳解】如圖,連接BF.∵△AEF是由△ABE沿AE折疊得到的,∴BF⊥AE,BE=EF.∵BC=6,點E為BC的中點,∴BE=EC=EF=3根據勾股定理有AE=AB+BE代入數據求得AE=5根據三角形的面積公式得BH=即可得BF=由FE=BE=EC,可得∠BFC=90°再由勾股定理有BC-BF=CF代入數據求得CF=故答案為【題目點撥】此題考查矩形的性質和折疊問題,解題關鍵在于利用好折疊的性質15、【解題分析】

過點B作BD⊥AC于D,設AH=BC=2x,根據等腰三角形三線合一的性質可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根據三角形的面積列方程求出BD,然后根據銳角的正弦=對邊:斜邊求解即可.【題目詳解】如圖,過點B作BD⊥AC于D,設AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根據勾股定理得,AC==x,S△ABC=BC?AH=AC?BD,即?2x?2x=?x?BD,解得BC=x,所以,sin∠BAC=.故答案為.16、【解題分析】

將三個小區分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.【題目詳解】解:將三個小區分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結果,其中兩個組恰好抽到同一個小區的結果有3種,所以兩個組恰好抽到同一個小區的概率為=.故答案為:.【題目點撥】此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回試驗還是不放回試驗.用到的知識點為:概率=所求情況數與總情況數之比.三、解答題(共8題,共72分)17、(1)1.5s;(2)S=x2+x+3(0<x<3);(3)當x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【解題分析】

(1)由于O是EF中點,因此當P為FG中點時,OP∥EG∥AC,據此可求出x的值.(2)由于四邊形AHPO形狀不規則,可根據三角形AFH和三角形OPF的面積差來得出四邊形AHPO的面積.三角形AHF中,AH的長可用AF的長和∠FAH的余弦值求出,同理可求出FH的表達式(也可用相似三角形來得出AH、FH的長).三角形OFP中,可過O作OD⊥FP于D,PF的長易知,而OD的長,可根據OF的長和∠FOD的余弦值得出.由此可求得y、x的函數關系式.(3)先求出三角形ABC和四邊形OAHP的面積,然后將其代入(2)的函數式中即可得出x的值.【題目詳解】解:(1)∵Rt△EFG∽Rt△ABC∴,即,∴FG==3cm∵當P為FG的中點時,OP∥EG,EG∥AC∴OP∥AC∴x==×3=1.5(s)∴當x為1.5s時,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm∵EG∥AH∴△EFG∽△AFH∴,∴AH=(x+5),FH=(x+5)過點O作OD⊥FP,垂足為D∵點O為EF中點∴OD=EG=2cm∵FP=3﹣x∴S四邊形OAHP=S△AFH﹣S△OFP=?AH?FH﹣?OD?FP=?(x+5)?(x+5)﹣×2×(3﹣x)=x2+x+3(0<x<3).(3)假設存在某一時刻x,使得四邊形OAHP面積與△ABC面積的比為13:1則S四邊形OAHP=×S△ABC∴x2+x+3=××6×8∴6x2+85x﹣250=0解得x1=,x2=﹣(舍去)∵0<x<3∴當x=(s)時,四邊形OAHP面積與△ABC面積的比為13:1.【題目點撥】本題是比較常規的動態幾何壓軸題,第1小題運用相似形的知識容易解決,第2小題同樣是用相似三角形建立起函數解析式,要說的是本題中說明了要寫出自變量x的取值范圍,而很多試題往往不寫,要記住自變量x的取值范圍是函數解析式不可分離的一部分,無論命題者是否交待了都必須寫,第3小題只要根據函數解析式列個方程就能解決.18、(1)一共調查了300名學生.(2)(3)體育部分所對應的圓心角的度數為48°.(4)1800名學生中估計最喜愛科普類書籍的學生人數為1.【解題分析】

(1)用文學的人數除以所占的百分比計算即可得解.(2)根據所占的百分比求出藝術和其它的人數,然后補全折線圖即可.(3)用體育所占的百分比乘以360°,計算即可得解.(4)用總人數乘以科普所占的百分比,計算即可得解.【題目詳解】解:(1)∵90÷30%=300(名),∴一共調查了300名學生.(2)藝術的人數:300×20%=60名,其它的人數:300×10%=30名.補全折線圖如下:(3)體育部分所對應的圓心角的度數為:×360°=48°.(4)∵1800×=1(名),∴1800名學生中估計最喜愛科普類書籍的學生人數為1.19、(1)12;22;12;4;50;(2)詳見解析;(3)1.【解題分析】

(1)求出各自的人數,補全表格即可;

(2)根據調整后的數據,補全條形統計圖即可;

(3)根據“游戲”人數占的百分比,乘以1500即可得到結果.【題目詳解】解:(1)填表如下:體能等級調整前人數調整后人數優秀812良好1622及格1212不及格44合計4050故答案為12;22;12;4;50;(2)補全條形統計圖,如圖所示:(3)抽取的學生中體能測試的優秀率為24%,則該校體能測試為“優秀”的人數為1500×24%=1(人).【題目點撥】本題考查了統計表與條形統計圖的知識點,解題的關鍵是熟練的掌握統計表與條形統計圖的相關知識點.20、-5【解題分析】

根據分式的運算法則以及實數的運算法則即可求出答案.【題目詳解】當x=sin30°+2﹣1+時,∴x=++2=3,原式=÷==﹣5.【題目點撥】本題考查分式的運算法則,解題的關鍵是熟練運用分式的運算法則,本題屬于基礎題型.21、(3)a=,方程的另一根為;(2)答案見解析.【解題分析】

(3)把x=2代入方程,求出a的值,再把a代入原方程,進一步解方程即可;(2)分兩種情況探討:①當a=3時,為一元一次方程;②當a≠3時,利用b2-4ac=3求出a的值,再代入解方程即可.【題目詳解】(3)將x=2代入方程,得,解得:a=.將a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根為;(2)①當a=3時,方程為2x=3,解得:x=3.②當a≠3時,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.當a=2時,原方程為:x2+2x+3=3,解得:x3=x2=-3;當a=3時,原方程為:-x2+2x-3=3,解得:x3=x2=3.綜上所述,當a=3,3,2時,方程僅有一個根,分別為3,3,-3.考點:3.一元二次方程根的判別式;2.解一元二次方程;3.分類思想的應用.22、(1)有3種購買方案①購乙6臺,②購甲1臺,購乙5臺,③購甲2臺,購乙4臺(2)購買甲種機器1臺,購買乙種機器5臺,【解題分析】

(1)設購買甲種機器x臺(x≥0),則購買乙種機器(6-x)臺,根據買機器所耗資金不能超過34萬元,即購買甲種機器的錢數+購買乙種機器的錢數≤34萬元.就可以得到關于x的不等式,就可以求出x的范圍.

(2)該公司購進的6臺機器的日生產能力不能低于380個,就是已知不等關系:甲種機器生產的零件數+乙種機器生產的零件數≤380件.根據(1)中的三種方案,可以計算出每種方案的需要資金,從而選擇出合適的方案.【題目詳解】解:(1)設購買甲種機器x臺(x≥0),則購買乙種機器(6-x)臺依題意,得7x+5(6-x)≤34解這個不等式,得x≤2,即x可取0,1,2三個值.∴該公司按要求可以有以下三種購買方案:方案一:不購買甲種機器,購買乙種機器6臺.方案二:購買甲種機器l1臺,購買乙種機器5臺.方案三:購買甲種機器2臺,購買乙種機器4臺(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論