廣東省深圳市深圳實驗校2024屆中考數學全真模擬試題含解析_第1頁
廣東省深圳市深圳實驗校2024屆中考數學全真模擬試題含解析_第2頁
廣東省深圳市深圳實驗校2024屆中考數學全真模擬試題含解析_第3頁
廣東省深圳市深圳實驗校2024屆中考數學全真模擬試題含解析_第4頁
廣東省深圳市深圳實驗校2024屆中考數學全真模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省深圳市深圳實驗校2024學年中考數學全真模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算正確的是()A.5ab﹣ab=4 B.a6÷a2=a4 C. D.(a2b)3=a5b32.下列代數運算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x53.如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B,C).若線段AD長為正整數,則點D的個數共有()A.5個 B.4個 C.3個 D.2個4.如圖,Rt△ABC中,∠C=90°,∠A=35°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=()A.35° B.60° C.70° D.70°或120°5.根據《九章算術》的記載中國人最早使用負數,下列負數中最大的是()A.-1 B.-12 C.-6.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m7.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數為()A.105° B.110° C.115° D.120°8.根據《天津市北大港濕地自然保護總體規劃(2017﹣2025)》,2018年將建立養殖業退出補償機制,生態補水78000000m1.將78000000用科學記數法表示應為()A.780×105B.78×106C.7.8×107D.0.78×1089.如圖顯示了用計算機模擬隨機投擲一枚圖釘的某次實驗的結果.下面有三個推斷:①當投擲次數是500時,計算機記錄“釘尖向上”的次數是308,所以“釘尖向上”的概率是0.616;②隨著試驗次數的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩定性,可以估計“釘尖向上”的概率是0.618;③若再次用計算機模擬此實驗,則當投擲次數為1000時,“釘尖向上”的頻率一定是0.1.其中合理的是()A.① B.② C.①② D.①③10.如圖是一個由4個相同的正方體組成的立體圖形,它的主視圖是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在Rt△ABC中,∠C=90°,AM是BC邊上的中線,cos∠AMC,則tan∠B的值為__________.12.比較大小:4(填入“>”或“<”號)13.如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側面的B點,最少要用_____秒鐘.14.計算:___.15.已知關于x方程x2﹣3x+a=0有一個根為1,則方程的另一個根為_____.16.如圖,在4×4正方形網格中,黑色部分的圖形構成一個軸對稱圖形,現在任選取一個白色的小正方形并涂黑,使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是_____.17.已知雙曲線經過點(-1,2),那么k的值等于_______.三、解答題(共7小題,滿分69分)18.(10分)某區教育局為了解今年九年級學生體育測試情況,隨機抽查了某班學生的體育測試成績為樣本,按A、B、C、D四個等級進行統計,并將統計結果繪制成如下的統計圖,請你結合圖中所給信息解答下列問題:說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下(1)樣本中D級的學生人數占全班學生人數的百分比是;(2)扇形統計圖中A級所在的扇形的圓心角度數是;(3)請把條形統計圖補充完整;(4)若該校九年級有500名學生,請你用此樣本估計體育測試中A級和B級的學生人數之和.19.(5分)如圖,在10×10的網格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點稱為格點.如果拋物線經過圖中的三個格點,那么以這三個格點為頂點的三角形稱為該拋物線的“內接格點三角形”.設對稱軸平行于y軸的拋物線與網格對角線OM的兩個交點為A,B,其頂點為C,如果△ABC是該拋物線的內接格點三角形,AB=3,且點A,B,C的橫坐標xA,xB,xC滿足xA<xC<xB,那么符合上述條件的拋物線條數是()A.7 B.8 C.14 D.1620.(8分)如圖,在平面直角坐標系中,直線:與軸,軸分別交于,兩點,且點,點在軸正半軸上運動,過點作平行于軸的直線.(1)求的值和點的坐標;(2)當時,直線與直線交于點,反比例函數的圖象經過點,求反比例函數的解析式;(3)當時,若直線與直線和(2)反比例函數的圖象分別交于點,,當間距離大于等于2時,求的取值范圍.21.(10分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個,若從中隨機摸出一個球,這個球是白球的概率為.求袋子中白球的個數;(請通過列式或列方程解答)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)22.(10分)先化簡,,其中x=.23.(12分)八年級一班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調查,問卷設置了“小說”“戲劇”“散文”“其他”四個類型,每位同學僅選一項,根據調查結果繪制了不完整的頻數分布表和扇形統計圖.類別頻數(人數)頻率小說0.5戲劇4散文100.25其他6合計1根據圖表提供的信息,解答下列問題:八年級一班有多少名學生?請補全頻數分布表,并求出扇形統計圖中“其他”類所占的百分比;在調查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現從以上四位同學中任意選出2名同學參加學校的戲劇興趣小組,請用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.24.(14分)某樓盤2018年2月份準備以每平方米7500元的均價對外銷售,由于國家有關房地產的新政策出臺后,購房者持幣觀望,為了加快資金周轉,房地產開發商對價格連續兩個月進行下調,4月份下調到每平方米6075元的均價開盤銷售.(1)求3、4兩月平均每月下調的百分率;(2)小穎家現在準備以每平方米6075元的開盤均價,購買一套100平方米的房子,因為她家一次性付清購房款,開發商還給予以下兩種優惠方案以供選擇:①打9.8折銷售;②不打折,送兩年物業管理費,物業管理費是每平方米每月1.5元,小穎家選擇哪種方案更優惠?(3)如果房價繼續回落,按此平均下調的百分率,請你預測到6月份該樓盤商品房成交均價是否會跌破4800元/平方米,請說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】

根據同底數冪的除法,合并同類項,積的乘方的運算法則進行逐一運算即可.【題目詳解】解:A、5ab﹣=4ab,此選項運算錯誤,B、a6÷a2=a4,此選項運算正確,C、,選項運算錯誤,D、(a2b)3=a6b3,此選項運算錯誤,故選B.【題目點撥】此題考查了同底數冪的除法,合并同類項,積的乘方,熟練掌握運算法則是解本題的關鍵.2、D【解題分析】

分別根據同底數冪的乘法、冪的乘方與積的乘方、完全平方公式進行逐一計算即可.【題目詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.【題目點撥】本題考查的是同底數冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關鍵.3、C【解題分析】試題分析:過A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是線段BC上的動點(不含端點B,C),∴AE≤AD<AB,即3≤AD<5,∵AD為正整數,∴AD=3或AD=4,當AD=4時,E的左右兩邊各有一個點D滿足條件,∴點D的個數共有3個.故選C.考點:等腰三角形的性質;勾股定理.4、D【解題分析】

①當點B落在AB邊上時,根據DB=DB1,即可解決問題,②當點B落在AC上時,在RT△DCB2中,根據∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【題目詳解】①當點B落在AB邊上時,∵DB=DB∴∠B=∠DB∴m=∠BDB②當點B落在AC上時,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故選D.【題目點撥】本題考查的知識點是旋轉的性質,解題關鍵是考慮多種情況,進行分類討論.5、B【解題分析】

根據兩個負數,絕對值大的反而小比較.【題目詳解】解:∵?12>?1>?2∴負數中最大的是?12故選:B.【題目點撥】本題考查了實數大小的比較,解題的關鍵是知道正數大于0,0大于負數,兩個負數,絕對值大的反而小.6、B【解題分析】

因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據正弦來解題,求出∠CAB,進而得出∠C′AB′的度數,然后可以求出魚線B'C'長度.【題目詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【題目點撥】此題主要考查了解直角三角形的應用,解本題的關鍵是把實際問題轉化為數學問題.7、C【解題分析】

如圖,首先證明∠AMO=∠2,然后運用對頂角的性質求出∠ANM=55°;借助三角形外角的性質求出∠AMO即可解決問題.【題目詳解】如圖,對圖形進行點標注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【題目點撥】本題考查了平行線的性質,三角形外角的性質,熟練掌握和靈活運用相關知識是解題的關鍵.8、C【解題分析】

科學記數法記數時,主要是準確把握標準形式a×10n即可.【題目詳解】解:78000000=7.8×107.故選C.【題目點撥】科學記數法的形式是a×10n,其中1≤|a|<10,n是整數,若這個數是大于10的數,則n比這個數的整數位數少1.9、B【解題分析】①當頻數增大時,頻率逐漸穩定的值即為概率,500次的實驗次數偏低,而頻率穩定在了0.618,錯誤;②由圖可知頻數穩定在了0.618,所以估計頻率為0.618,正確;③.這個實驗是一個隨機試驗,當投擲次數為1000時,釘尖向上”的概率不一定是0.1.錯誤,故選B.【題目點撥】本題考查了利用頻率估計概率,能正確理解相關概念是解題的關鍵.10、D【解題分析】

從正面看,有2層,3列,左側一列有1層,中間一列有2層,右側一列有一層,據此解答即可.【題目詳解】∵從正面看,有2層,3列,左側一列有1層,中間一列有2層,右側一列有一層,∴D是該幾何體的主視圖.故選D.【題目點撥】本題考查三視圖的知識,從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】

根據cos∠AMC,設,,由勾股定理求出AC的長度,根據中線表達出BC即可求解.【題目詳解】解:∵cos∠AMC,,設,,∴在Rt△ACM中,∵AM是BC邊上的中線,∴BM=MC=3x,∴BC=6x,∴在Rt△ABC中,,故答案為:.【題目點撥】本題考查了銳角三角函數值的求解問題,解題的關鍵是熟記銳角三角函數的定義.12、>【解題分析】

試題解析:∵<∴4<.考點:實數的大小比較.【題目詳解】請在此輸入詳解!13、2.5秒.【解題分析】

把此正方體的點A所在的面展開,然后在平面內,利用勾股定理求點A和B點間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得.【題目詳解】解:因為爬行路徑不唯一,故分情況分別計算,進行大、小比較,再從各個路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長為5cm,用時最少:5÷2=2.5秒.【題目點撥】本題考查了勾股定理的拓展應用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關鍵.14、【解題分析】

直接利用負指數冪的性質以及零指數冪的性質分別化簡得出答案.【題目詳解】原式.故答案為.【題目點撥】本題考查了實數運算,正確化簡各數是解題的關鍵.15、1【解題分析】分析:設方程的另一個根為m,根據兩根之和等于-,即可得出關于m的一元一次方程,解之即可得出結論.詳解:設方程的另一個根為m,根據題意得:1+m=3,解得:m=1.故答案為1.點睛:本題考查了根與系數的關系,牢記兩根之和等于-是解題的關鍵.16、【解題分析】如圖,有5種不同取法;故概率為.17、-1【解題分析】

分析:根據點在曲線上點的坐標滿足方程的關系,將點(-1,2)代入,得:,解得:k=-1.三、解答題(共7小題,滿分69分)18、(1)10%;(2)72;(3)5,見解析;(4)330.【解題分析】

解:(1)根據題意得:

D級的學生人數占全班人數的百分比是:

1-20%-46%-24%=10%;

(2)A級所在的扇形的圓心角度數是:20%×360°=72°;

(3)∵A等人數為10人,所占比例為20%,

∴抽查的學生數=10÷20%=50(人),

∴D級的學生人數是50×10%=5(人),

補圖如下:

(4)根據題意得:

體育測試中A級和B級的學生人數之和是:500×(20%+46%)=330(名),

答:體育測試中A級和B級的學生人數之和是330名.【題目點撥】本題考查統計的知識,要求考生會識別條形統計圖和扇形統計圖.19、C【解題分析】

根據在OB上的兩個交點之間的距離為3,可知兩交點的橫坐標的差為3,然后作出最左邊開口向下的拋物線,再向右平移1個單位,向上平移1個單位得到開口向下的拋物線的條數,同理可得開口向上的拋物線的條數,然后相加即可得解.【題目詳解】解:如圖,開口向下,經過點(0,0),(1,3),(3,3)的拋物線的解析式為y=﹣x2+4x,然后向右平移1個單位,向上平移1個單位一次得到一條拋物線,可平移6次,所以,一共有7條拋物線,同理可得開口向上的拋物線也有7條,所以,滿足上述條件且對稱軸平行于y軸的拋物線條數是:7+7=1.故選C.【題目點撥】本題是二次函數綜合題.主要考查了網格結構的知識與二次函數的性質,二次函數圖象與幾何變換,作出圖形更形象直觀.20、(1),;(2);的取值范圍是:.【解題分析】

(1)把代入得出的值,進而得出點坐標;(2)當時,將代入,進而得出的值,求出點坐標得出反比例函數的解析式;(3)可得,當向下運動但是不超過軸時,符合要求,進而得出的取值范圍.【題目詳解】解:(1)∵直線:經過點,∴,∴,∴;(2)當時,將代入,得,,∴代入得,,∴;(3)當時,即,而,如圖,,當向下運動但是不超過軸時,符合要求,∴的取值范圍是:.【題目點撥】本題考查了反比例函數與一次函數的交點,當有兩個函數的時候,著重使用一次函數,體現了方程思想,綜合性較強.21、(1)袋子中白球有2個;(2)見解析,.【解題分析】

(1)首先設袋子中白球有x個,利用概率公式求即可得方程:,解此方程即可求得答案;

(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次都摸到相同顏色的小球的情況,再利用概率公式即可求得答案.【題目詳解】解:(1)設袋子中白球有x個,根據題意得:,解得:x=2,經檢驗,x=2是原分式方程的解,∴袋子中白球有2個;(2)畫樹狀圖得:∵共有9種等可能的結果,兩次都摸到相同顏色的小球的有5種情況,∴兩次都摸到相同顏色的小球的概率為:.【題目點撥】此題考查了列表法或樹狀圖法求概率.注意掌握方程思想的應用.注意概率=所求情況數與總情況數之比.22、【解題分析】

根據分式的化簡方法先通分再約分,然后帶入求值.【題目詳解】解:當時,.【題目點撥】此題重點考查學生對分式的化簡的應用,掌握分式的化簡

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論