四川省眉山市市級名校2024屆中考數學最后一模試卷含解析_第1頁
四川省眉山市市級名校2024屆中考數學最后一模試卷含解析_第2頁
四川省眉山市市級名校2024屆中考數學最后一模試卷含解析_第3頁
四川省眉山市市級名校2024屆中考數學最后一模試卷含解析_第4頁
四川省眉山市市級名校2024屆中考數學最后一模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省眉山市市級名校2024學年中考數學最后一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.學校小組名同學的身高(單位:)分別為:,,,,,則這組數據的中位數是().A. B. C. D.2.如圖是某幾何體的三視圖及相關數據,則該幾何體的全面積是()A.15π B.24π C.20π D.10π3.某班組織了針對全班同學關于“你最喜歡的一項體育活動”的問卷調查后,繪制出頻數分布直方圖,由圖可知,下列結論正確的是()A.最喜歡籃球的人數最多 B.最喜歡羽毛球的人數是最喜歡乒乓球人數的兩倍C.全班共有50名學生 D.最喜歡田徑的人數占總人數的10%4.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經過點,將繞點順時針方向旋轉(),交于點,交于點,則的值為()A. B. C. D.5.如圖,甲圓柱型容器的底面積為30cm2,高為8cm,乙圓柱型容器底面積為xcm2,若將甲容器裝滿水,然后再將甲容器里的水全部倒入乙容器中(乙容器無水溢出),則乙容器水面高度y(cm)與x(cm2)之間的大致圖象是()A. B. C. D.6.已知⊙O的半徑為13,弦AB∥CD,AB=24,CD=10,則四邊形ACDB的面積是()A.119 B.289 C.77或119 D.119或2897.甲、乙兩車從A地出發,勻速駛向B地.甲車以80km/h的速度行駛1h后,乙車才沿相同路線行駛.乙車先到達B地并停留1h后,再以原速按原路返回,直至與甲車相遇.在此過程中,兩車之間的距離y(km)與乙車行駛時間x(h)之間的函數關系如圖所示.下列說法:①乙車的速度是120km/h;②m=160;③點H的坐標是(7,80);④n=7.1.其中說法正確的有()A.4個 B.3個 C.2個 D.1個8.如圖1,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖1.下列關于圖1的四個結論中,不一定成立的是()A.點A落在BC邊的中點 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC9.下列對一元二次方程x2+x﹣3=0根的情況的判斷,正確的是()A.有兩個不相等實數根 B.有兩個相等實數根C.有且只有一個實數根 D.沒有實數根10.某班

30名學生的身高情況如下表:身高人數134787則這

30

名學生身高的眾數和中位數分別是A., B.,C., D.,11.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.612.我國古代數學著作《孫子算經》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五,屈繩量之,不足一尺,問木長幾何。”大致意思是:“用一根繩子去量一根木條,繩長剩余4.5尺,將繩子對折再量木條,木條剩余一尺,問木條長多少尺”,設繩子長尺,木條長尺,根據題意所列方程組正確的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一個多邊形的內角和是,則它是______邊形.14.已知三角形兩邊的長分別為1、5,第三邊長為整數,則第三邊的長為_____.15.如圖,在中,于點,于點,為邊的中點,連接,則下列結論:①,②,③為等邊三角形,④當時,.請將正確結論的序號填在橫線上__.16.計算:______.17.已知△ABC中,∠C=90°,AB=9,,把△ABC繞著點C旋轉,使得點A落在點A′,點B落在點B′.若點A′在邊AB上,則點B、B′的距離為_____.18.如圖,已知AE∥BD,∠1=130°,∠2=28°,則∠C的度數為____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)校車安全是近幾年社會關注的重大問題,安全隱患主要是超速和超載.某中學數學活動小組設計了如下檢測公路上行駛的汽車速度的實驗:先在公路旁邊選取一點C,再在筆直的車道上確定點D,使CD與垂直,測得CD的長等于21米,在上點D的同側取點A、B,使∠CAD=30,∠CBD=60.求AB的長(精確到0.1米,參考數據:);已知本路段對校車限速為40千米/小時,若測得某輛校車從A到B用時2秒,這輛校車是否超速?說明理由.20.(6分)計算:÷–+2018021.(6分)在平面直角坐標系中,一次函數的圖象與反比例函數(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣2,3).求一次函數和反比例函數解析式.若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.根據圖象,直接寫出不等式的解集.22.(8分)2018年湖南省進入高中學習的學生三年后將面對新高考,高考方案與高校招生政策都將有重大變化.某部門為了了解政策的宣傳情況,對某初級中學學生進行了隨機抽樣調查,根據學生對政策的了解程度由高到低分為A,B,C,D四個等級,并對調查結果分析后繪制了如下兩幅圖不完整的統計圖.請你根據圖中提供的信息完成下列問題:(1)求被調查學生的人數,并將條形統計圖補充完整;(2)求扇形統計圖中的A等對應的扇形圓心角的度數;(3)已知該校有1500名學生,估計該校學生對政策內容了解程度達到A等的學生有多少人?23.(8分)先化簡,再求值:,其中a是方程a2+a﹣6=0的解.24.(10分)已知拋物線過點,,求拋物線的解析式,并求出拋物線的頂點坐標.25.(10分)先化簡,再求值:,其中x是滿足不等式﹣(x﹣1)≥的非負整數解.26.(12分)如圖,一位測量人員,要測量池塘的寬度的長,他過兩點畫兩條相交于點的射線,在射線上取兩點,使,若測得米,他能求出之間的距離嗎?若能,請你幫他算出來;若不能,請你幫他設計一個可行方案.27.(12分)在矩形ABCD中,AD=2AB,E是AD的中點,一塊三角板的直角頂點與點E重合,兩直角邊與AB,BC分別交于點M,N,求證:BM=CN.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解題分析】

根據中位數的定義進行解答【題目詳解】將5名同學的身高按從高到矮的順序排列:159、156、152、151、147,因此這組數據的中位數是152.故選C.【題目點撥】本題主要考查中位數,解題的關鍵是熟練掌握中位數的定義:一組數據按從小到大(或從大到小)的順序依次排列,處在中間位置的一個數(或最中間兩個數據的平均數)稱為中位數.2、B【解題分析】解:根據三視圖得到該幾何體為圓錐,其中圓錐的高為4,母線長為5,圓錐底面圓的直徑為6,所以圓錐的底面圓的面積=π×()2=9π,圓錐的側面積=×5×π×6=15π,所以圓錐的全面積=9π+15π=24π.故選B.點睛:本題考查了圓錐的計算:圓錐的側面展開圖為扇形,扇形的半徑等于圓錐的母線長,扇形的弧長等于圓錐底面圓的周長.也考查了三視圖.3、C【解題分析】【分析】觀察直方圖,根據直方圖中提供的數據逐項進行分析即可得.【題目詳解】觀察直方圖,由圖可知:A.最喜歡足球的人數最多,故A選項錯誤;B.最喜歡羽毛球的人數是最喜歡田徑人數的兩倍,故B選項錯誤;C.全班共有12+20+8+4+6=50名學生,故C選項正確;D.最喜歡田徑的人數占總人數的=8%,故D選項錯誤,故選C.【題目點撥】本題考查了頻數分布直方圖,從直方圖中得到必要的信息進行解題是關鍵.4、C【解題分析】

先根據直角三角形斜邊上的中線性質得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據旋轉的性質得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【題目詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【題目點撥】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了相似三角形的判定與性質.5、C【解題分析】

根據題意可以寫出y關于x的函數關系式,然后令x=40求出相應的y值,即可解答本題.【題目詳解】解:由題意可得,y==,當x=40時,y=6,故選C.【題目點撥】本題考查了反比例函數的圖象,根據題意列出函數解析式是解決此題的關鍵.6、D【解題分析】

分兩種情況進行討論:①弦AB和CD在圓心同側;②弦AB和CD在圓心異側;作出半徑和弦心距,利用勾股定理和垂徑定理,然后按梯形面積的求解即可.【題目詳解】解:①當弦AB和CD在圓心同側時,如圖1,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∴OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;∴四邊形ACDB的面積②當弦AB和CD在圓心異側時,如圖2,∵AB=24cm,CD=10cm,∴.AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴四邊形ACDB的面積∴四邊形ACDB的面積為119或289.故選:D.【題目點撥】本題考查了勾股定理和垂徑定理的應用.此題難度適中,解題的關鍵是注意掌握數形結合思想與分類討論思想的應用,小心別漏解.7、B【解題分析】

根據題意,兩車距離為函數,由圖象可知兩車起始距離為80,從而得到乙車速度,根據圖象變化規律和兩車運動狀態,得到相關未知量.【題目詳解】由圖象可知,乙出發時,甲乙相距80km,2小時后,乙車追上甲.則說明乙每小時比甲快40km,則乙的速度為120km/h.①正確;由圖象第2﹣6小時,乙由相遇點到達B,用時4小時,每小時比甲快40km,則此時甲乙距離4×40=160km,則m=160,②正確;當乙在B休息1h時,甲前進80km,則H點坐標為(7,80),③正確;乙返回時,甲乙相距80km,到兩車相遇用時80÷(120+80)=0.4小時,則n=6+1+0.4=7.4,④錯誤.故選B.【題目點撥】本題以函數圖象為背景,考查雙動點條件下,兩點距離與運動時間的函數關系,解答時既要注意圖象變化趨勢,又要關注動點的運動狀態.8、A【解題分析】

根據折疊的性質明確對應關系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點,所以DB=DA,故C正確.【題目詳解】根據題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯,BA≠CA.故選A.【題目點撥】主要考查了三角形的內角和外角之間的關系以及等腰三角形的性質.還涉及到翻折變換以及中位線定理的運用.(1)三角形的外角等于與它不相鄰的兩個內角和.(1)三角形的內角和是180度.求角的度數常常要用到“三角形的內角和是180°這一隱含的條件.通過折疊變換考查正多邊形的有關知識,及學生的邏輯思維能力.解答此類題最好動手操作.9、A【解題分析】【分析】根據方程的系數結合根的判別式,即可得出△=13>0,進而即可得出方程x2+x﹣3=0有兩個不相等的實數根.【題目詳解】∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x2+x﹣3=0有兩個不相等的實數根,故選A.【題目點撥】本題考查了根的判別式,一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.10、A【解題分析】

找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數;眾數是一組數據中出現次數最多的數據.【題目詳解】解:這組數據中,出現的次數最多,故眾數為,

共有30人,

第15和16人身高的平均數為中位數,

即中位數為:,

故選:A.【題目點撥】本題考查了眾數和中位數的知識,一組數據中出現次數最多的數據叫做眾數;將一組數據按照從小到大或從大到小的順序排列,如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.11、D【解題分析】

連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【題目詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【題目點撥】本題考查了正六邊形的外接圓的知識,解題的關鍵是畫出圖形,找出線段之間的關系.12、A【解題分析】

本題的等量關系是:繩長-木長=4.5;木長-×繩長=1,據此列方程組即可求解.【題目詳解】設繩子長x尺,木條長y尺,依題意有.故選A.【題目點撥】本題考查由實際問題抽象出二元一次方程組,解題的關鍵是明確題意,列出相應的二元一次方程組.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、六【解題分析】試題分析:這個正多邊形的邊數是n,則(n﹣2)?180°=720°,解得:n=1.則這個正多邊形的邊數是六,故答案為六.考點:多邊形內角與外角.14、2【解題分析】分析:根據三角形的三邊關系“任意兩邊之和>第三邊,任意兩邊之差<第三邊”,求得第三邊的取值范圍,再進一步根據第三邊是整數求解.詳解:根據三角形的三邊關系,得第三邊>4,而<1.又第三條邊長為整數,則第三邊是2.點睛:此題主要是考查了三角形的三邊關系,同時注意整數這一條件.15、①③④【解題分析】

①根據直角三角形斜邊上的中線等于斜邊的一半可判斷①;②先證明△ABM∽△ACN,再根據相似三角形的對應邊成比例可判斷②;③先根據直角三角形兩銳角互余的性質求出∠ABM=∠ACN=30°,再根據三角形的內角和定理求出∠BCN+∠CBM=60°,然后根據三角形的一個外角等于與它不相鄰的兩個內角的和求出∠BPN+∠CPM=120°,從而得到∠MPN=60°,又由①得PM=PN,根據有一個角是60°的等腰三角形是等邊三角形可判斷③;④當∠ABC=45°時,∠BCN=45°,進而判斷④.【題目詳解】①∵BM⊥AC于點M,CN⊥AB于點N,P為BC邊的中點,∴PM=BC,PN=BC,∴PM=PN,正確;②在△ABM與△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,錯誤;③∵∠A=60°,BM⊥AC于點M,CN⊥AB于點N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM=180°-60°-30°×2=60°,∵點P是BC的中點,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等邊三角形,正確;④當∠ABC=45°時,∵CN⊥AB于點N,∴∠BNC=90°,∠BCN=45°,∵P為BC中點,可得BC=PB=PC,故④正確.所以正確的選項有:①③④故答案為①③④【題目點撥】本題主要考查了直角三角形斜邊的中線等于斜邊的一半的性質,相似三角形、等邊三角形、等腰直角三角形的判定與性質,等腰三角形三線合一的性質,仔細分析圖形并熟練掌握性質是解題的關鍵.16、【解題分析】原式==.故答案為:.17、4【解題分析】

過點C作CH⊥AB于H,利用解直角三角形的知識,分別求出AH、AC、BC的值,進而利用三線合一的性質得出AA'的值,然后利用旋轉的性質可判定△ACA'∽△BCB',繼而利用相似三角形的對應邊成比例的性質可得出BB'的值.【題目詳解】解:過點C作CH⊥AB于H,

∵在Rt△ABC中,∠C=90,cosA=,

∴AC=AB?cosA=6,BC=3,

在Rt△ACH中,AC=6,cosA=,

∴AH=AC?cosA=4,

由旋轉的性質得,AC=A'C,BC=B'C,

∴△ACA'是等腰三角形,因此H也是AA'中點,

∴AA'=2AH=8,

又∵△BCB'和△ACA'都為等腰三角形,且頂角∠ACA'和∠BCB'都是旋轉角,

∴∠ACA'=∠BCB',

∴△ACA'∽△BCB',∴即,解得:BB'=4.故答案為:4.【題目點撥】此題考查了解直角三角形、旋轉的性質、勾股定理、等腰三角形的性質、相似三角形的判定與性質,解答本題的關鍵是得出△ACA'∽△BCB'.18、22°【解題分析】

由AE∥BD,根據平行線的性質求得∠CBD的度數,再由對頂角相等求得∠CDB的度數,繼而利用三角形的內角和等于180°求得∠C的度數.【題目詳解】解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案為22°【題目點撥】本題考查了平行線的性質,對頂角相等及三角形內角和定理.熟練運用相關知識是解決問題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)24.2米(2)超速,理由見解析【解題分析】

(1)分別在Rt△ADC與Rt△BDC中,利用正切函數,即可求得AD與BD的長,從而求得AB的長.(2)由從A到B用時2秒,即可求得這輛校車的速度,比較與40千米/小時的大小,即可確定這輛校車是否超速.【題目詳解】解:(1)由題意得,在Rt△ADC中,,在Rt△BDC中,,∴AB=AD-BD=(米).(2)∵汽車從A到B用時2秒,∴速度為24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小時,∴該車速度為43.56千米/小時.∵43.56千米/小時大于40千米/小時,∴此校車在AB路段超速.20、2【解題分析】

根據實數的混合運算法則進行計算.【題目詳解】解:原式=-(-1)+1=-+1+1=2【題目點撥】此題重點考察學生對實數的混合運算的應用,熟練掌握計算方法是解題的關鍵.21、(1)y=﹣x+,y=;(2)12;(3)x<﹣2或0<x<4.【解題分析】

(1)將點A坐標代入解析式,可求解析式;(2)一次函數和反比例函數解析式組成方程組,求出點B坐標,即可求△ABF的面積;(3)直接根據圖象可得.【題目詳解】(1)∵一次函數y=﹣x+b的圖象與反比例函數y=(k≠0)圖象交于A(﹣3,2)、B兩點,∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6∴b=,k=﹣6∴一次函數解析式y=﹣,反比例函數解析式y=.(2)根據題意得:,解得:,∴S△ABF=×4×(4+2)=12(3)由圖象可得:x<﹣2或0<x<4【題目點撥】本題考查了反比例函數圖象與一次函數圖象的交點問題,待定系數法求解析式,熟練運用函數圖象解決問題是本題的關鍵.22、(1)圖見解析;(2)126°;(3)1.【解題分析】

(1)利用被調查學生的人數=了解程度達到B等的學生數÷所占比例,即可得出被調查學生的人數,由了解程度達到C等占到的比例可求出了解程度達到C等的學生數,再利用了解程度達到A等的學生數=被調查學生的人數-了解程度達到B等的學生數-了解程度達到C等的學生數-了解程度達到D等的學生數可求出了解程度達到A等的學生數,依此數據即可將條形統計圖補充完整;(2)根據A等對應的扇形圓心角的度數=了解程度達到A等的學生數÷被調查學生的人數×360°,即可求出結論;(3)利用該校現有學生數×了解程度達到A等的學生所占比例,即可得出結論.【題目詳解】(1)48÷40%=120(人),120×15%=18(人),120-48-18-12=42(人).將條形統計圖補充完整,如圖所示.(2)42÷120×100%×360°=126°.答:扇形統計圖中的A等對

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論