輥軸型摩擦擺隔振系統的多體動力學分析_第1頁
輥軸型摩擦擺隔振系統的多體動力學分析_第2頁
輥軸型摩擦擺隔振系統的多體動力學分析_第3頁
輥軸型摩擦擺隔振系統的多體動力學分析_第4頁
輥軸型摩擦擺隔振系統的多體動力學分析_第5頁
已閱讀5頁,還剩2頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

輥軸型摩擦擺隔振系統的多體動力學分析

同構模型的構建土地承包技術的擴展系統是對于土地承包的土地承包系統的一個kin分類賬戶,它支持從上方來管理土地承包系統和天然氣管道。a-自由線系統(km)是支持一個kind的第三方組織。在這一點上,與嘉園的第一階段相比,它以緩慢的速度確定了這一可能的成就,而c-i-s-u型線位于平面上,而不是向前延伸。1.輕度微十字系統,微十字系統,微圓異常控制系統,微圓異常控制系統,微圓異常控制系統,微圓異常控制系統,微圓異常控制系統,微圓異常控制系統,微圓異常控制系統,微圓異常控制系統,微圓異常控制系統,微圓異常控制系統,微圓異常控制系統,微圓異常控制系統,微圓異常控制系統,微圓異常控制系統和微圓異常控制系統。Becauseofthecomplexityofthesystemkinematics,mostofexistingstudieshavenotbuilttheequationofmotionforFPSwithdualrollers,butareallbasedonmodelsdeterminedbyinput-outputdata.Someresearchesapplythestaticequivalentmethodtoacquireequivalentstiffnessandothersusetheneuro-fuzzymethodtoconstructthedynamicmodelofFPSwithdualrollersbasedonexperimentaldata.Inthispaper,adirectmultibodydynamicapproachispresentedbasedontheanalysisofthekinematicsofFPSwithdualrollers.Itcanbereducedtoaonedegree-of-freedomsystemaftersophisticatelyinvestigatingthesystemkinematics.ThenthetheoremoftherelativekineticenergyforasystemofparticlesinthedifferentialformisusedtogettheequationofmotionofFPSwithdualrollers.TheequationobtainedinthispaperisusefulfortheforwardmodelingofFPSwithdualrollers.Bysolvingtheequationdirectly,theforwardmodelingisefficientlyimplemented,whichfacilitatesthevibrationcontrolprocessintheearthquakeengineering.1通過外部網絡實名法表達受益數據和溝通客體roll聯合while-veloctrall聯合as/safterityofrallroll就業/veloctitymorys兩roll國際專家,李玉德krall國際roll就業/投資的國際習慣法while-roll國際實踐,veloctinfici治理,veloctinficiensroll就業/投資國內roll國際實踐,veloctinficiensroll就業/投資國內roll國際實踐,veloctinfici治理,veloctinficiens國際實踐,veloctinfici治理,veloctindex,etis國際roll3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.Fig.2isaschemaofFPS.Tworollersandthetopplatearetakenasamultibodysystem.Inkinematicanalyses,thebottomplateisassumedtobestatic.Attachingtheoriginofadownwardorientedpolaraxistothecurvaturecenteronthecylindricalsurfaceofthebottomplate,itshouldbefaraboveFigs.2,3ifitisdisplayed,thepolarangleθlocatingthepositionvectorstartingfromtheoriginpointingtothecenterofthetworollers(C2)ischosenasacoordinate(seeFig.3).Asshowninthefollowingsystemkinematicanalyses,theangleisanindependentparametersufficienttodescribethemotionofthewholesystem.Firstly,assumingthattheradiiofcylindricalsurfacesoftopandbottomplatesarebothR,theradiusofeachrollerisrandthedistancebetweenthetworollers′centersisL.Thetworollersrollonthebothcylindricalsurfacesoftopandbottomplateswithoutslipping.AssumingthatRislargeenoughandθissmallenough,twoplatesdonotbecontactedandtherollersdonotrollofftheplates.Inthiscase,Figs.2,3showthatwhereverrollersgo,thefourcontactpointsbetweentwoplatesandtworollersalwaysformarectangleEFHG.Becauseofthecurvatureoftheplatesurface,twocontactpointsontheleftrollerarenolongeratendsofonediameterasinthecaseoftwoflatsurfaceplates,butatendsofaverticallineEGperpendiculartothelineABlinkingtherollers′centers.VelocitiesoftwouppercontactpointsEandFareparalleltoAB,whilevelocitiesoftwolowercontactpointsGandHarezero,thusithasthepropertyoftheinstantaneouscenterofthezerovelocity.Becausethereisnotaslipbetweenthetopplateandtworollers,thevelocityofthecontactpointEontheplatesideisthesameasthatonthesideoftheleftroller.ThisrelationalsoappliestothecontactpointF.Asaplanarlymovingobject,ifanytwopointsonithavethesamevelocityvectorsataninstant,theobjectundergoesinstantaneoustranslation.Therefore,anypointontheupperplateatthemomenthasthesamevelocity.SothevelocityofthecenteroftheupperplateC1isthesameasthatofcontactpointsEandFoftheobjectvC1=vE=vF(1)vC1=vE=vF(1)ThevelocitiesofotherpointshavethefollowingrelationsvE=2rcosΔ?˙φ(2)vA=r˙φ=(R-r)˙θ(3)vC2=vAcosΔ=12vC1(4)vE=2rcosΔ?φ˙(2)vA=rφ˙=(R?r)θ˙(3)vC2=vAcosΔ=12vC1(4)Inpractice,therectangularmotioncomponentsareeasilyobserved.Applyingtheserelations,themotionofallthepointscanbeobtainedintherectangularcoordinatesystem.Theorigin(O)oftherectangularcoordinatesystemissetattheequilibriumpositionofC2(thelowestpositionC2canbereached),whichisattachedtotheimaginaryextensionpartofthemovingbase.Intherectangularcoordinatesystem,thevelocitycomponentofC2canbeobtainedfromEqs.(3,4)˙xC2=cosΔ(R-r)cosθ˙θ(5)˙yC2=cosΔ(R-r)sinθ˙θ(6)x˙C2=cosΔ(R?r)cosθθ˙(5)y˙C2=cosΔ(R?r)sinθθ˙(6)Bypeformingdifferentiationandintegration,theaccelerationandthedisplacementofC2canbeobtainedas¨xC2=(R-r)cosΔ(¨θ?cosθ-sinθ˙θ2)(7)¨yC2=cosΔ(R-r)(sinθ¨θ+cosθ˙θ2)(8)xC2=cosΔ(R-r)sinθ(9)yC2=cosΔ(R-r)(1-cosθ)(10)x¨C2=(R?r)cosΔ(θ¨?cosθ?sinθθ˙2)(7)y¨C2=cosΔ(R?r)(sinθθ¨+cosθθ˙2)(8)xC2=cosΔ(R?r)sinθ(9)yC2=cosΔ(R?r)(1?cosθ)(10)FromEq.(4)anditsdifferentiationandintegration,rectangularcomponentsoftheacceleration,thevelocityandthedisplacementofC1are¨xC1=2(R-r)cosΔ(¨θ?cosθ-sinθ˙θ2)(11)˙xC1=2cosΔ(R-r)cosθ˙θ(12)xC1=2cosΔ(R-r)sinθ(13)¨yC1=2cosΔ(R-r)(sinθ¨θ+cosθ˙θ2)(14)˙yC1=2cosΔ(R-r)sinθ˙θ(15)yC1=h+2cosΔ(R-r)(1-cosθ)(16)x¨C1=2(R?r)cosΔ(θ¨?cosθ?sinθθ˙2)(11)x˙C1=2cosΔ(R?r)cosθθ˙(12)xC1=2cosΔ(R?r)sinθ(13)y¨C1=2cosΔ(R?r)(sinθθ¨+cosθθ˙2)(14)y˙C1=2cosΔ(R?r)sinθθ˙(15)yC1=h+2cosΔ(R?r)(1?cosθ)(16)wherehisthedistancebetweenC1andC2asC2locatesatitslowestposition,whereC1andC2areinthesameverticalline.Sofar,allthekinematicrelationsareobtained,themotionofC1,C2andtworollerscanbedescribedbyθ,i.e.FPScanbereducedintoaonedegree-of-freedomsystem.Furthermore,themotionoftworollersisrollingwithoutslippingrelativetothebottomplate,andC2movesalongacirclewithradius(R-r)cosΔ.Becauseateveryinstanttheupperplateisininstantaneoustranslation,themotionoftheupperplateistranslationallthetime.ThusC1movesalonganothercirclewithradius2(R-r)cosΔbutwithdifferentcenterswhichisontheextendinglineoftheverticalpolaraxis.Whentworollersandtheupperplatemove,thetwoparallelradiisweepsynchronouslywiththesameangleθ.2relactore作為單一rolusson回運用于碳經濟實踐sindingSincethesystemcanbereducedintoaonedegree-of-freedomsystem,theequationofmotioncanbeeasilyderivedbysomedynamictheoremsforasystemofparticles.Inordertoincorporatethebasemovementinthesystem,theaboveappliedcoordinatesystemisattachedtothebottomplateasamovingreferenceframe.Inthiscase,therelativekineticenergytheoremforasystemofparticlesinthedifferentialformistherighttheoremtoconstructtheequationofmotionofthesystem.Letthemassofeachrollerbem,andthemassoftheupperplatebeM.Fig.3istheschemaofthesystematageneralposition.WhentheangleoftheradiuspointingtoC2isgivenanincrementdθ,thentheincrementofverticaldisplacementofC1andC2canbeobtainedbyapplyingthefollowingkinematicrelationsdyC1=vC1dt·sinθ(17)dyC2=vC2dt·sinθ(18)Thus,therelativekineticenergytheoremforthesysteminthedifferentialformcanbewrittenasd(2?1232mr2˙φ2+12ΜvC12)=-(2mg?vC2dt?sinθ+Μg?vC1dt?sinθ)-Μ¨xb?vC1dt?cosθ-2m¨xbvC2dt?cosθ(19)d(2?1232mr2φ˙2+12MvC12)=?(2mg?vC2dt?sinθ+Mg?vC1dt?sinθ)?Mx¨b?vC1dt?cosθ?2mx¨bvC2dt?cosθ(19)Thisisthedifferentialexpressionofthekineticenergytheoremforanenergyconservativecasewithoutconsideringtheelementalworkoftherollingresistance.Inordertotaketherollingresistanceintoaccount,onemustfindthehinderingcouple.Accordingtothenormalprojectionofthemotiontheoremofthemasscenterforthesystemoftworollersandtheupperplate,thefollowingequationsaregiven2m˙θ2(R-r)cosΔ+Μ˙θ22(R-r)cosΔ=(Ν1+Ν2)cosΔ-2mgcosθ-Μgcosθ+2m¨xbsinθ+Μ¨xbsinθ+(F1-F2)sinΔ(20)2mθ˙2(R?r)cosΔ+Mθ˙22(R?r)cosΔ=(N1+N2)cosΔ?2mgcosθ?Mgcosθ+2mx¨bsinθ+Mx¨bsinθ+(F1?F2)sinΔ(20)Applyingthesametheoremtotheupperplate,wehaveΜ˙θ22(R-r)cosΔ=(Ν3+Ν4)cosΔ-Μgcosθ+Μ¨xbsinθ+(F3-F4)sinΔ(21)F1≈F2F3≈F4(22)Mθ˙22(R?r)cosΔ=(N3+N4)cosΔ?Mgcosθ+Mx¨bsinθ+(F3?F4)sinΔ(21)F1≈F2F3≈F4(22)thelastterminEqs.(20,21)canbeneglected.DefiningR*asR*=2cosΔ(R-r)(23)Ν1+Ν2=[(m+Μ)R*˙θ2+(2m+Μ)gcosθ-(2m+Μ)¨xbsinθ-(F1-F2)sinΔ]/cosΔ(24)Ν3+Ν4=[(m+Μ)R*˙θ2+Μgcosθ-Μ¨xbsinθ-(F3-F4)sinΔ]/cosΔ(25)R?=2cosΔ(R?r)(23)N1+N2=[(m+M)R?θ˙2+(2m+M)gcosθ?(2m+M)x¨bsinθ?(F1?F2)sinΔ]/cosΔ(24)N3+N4=[(m+M)R?θ˙2+Mgcosθ?Mx¨bsinθ?(F3?F4)sinΔ]/cosΔ(25)ThetotalrollingfrictionalcoupleinthesystemismC=μ(Ν1+Ν2+Ν3+Ν4)=μ[(m+2Μ)R*˙θ2+2(m+Μ)gcosθ-2(m+Μ)¨xbsinθ]/cosΔ(26)whereμisthecoefficientoftherollingresistance.Therefore,theelementalworkdonebythetotalhinderingcoupleisdW=mCdφ(27)Addingthistermtothekineticenergytheoremwithanegativesign,andsubstitutingthefollowingrelationandsomeotherobtainedkinematicrelationsintoitdφ=R-rrdθ(28)weobtain[3m(R-r)2+4Μcos2Δ(R-r)2]¨θ+μ[(m+2Μ)R*˙θ2+2(m+Μ)gcosθ-2(m+Μ)¨xbsinθ]R-rrcosΔ+2(m+Μ)g(R-r)cosΔsinθ+2(Μ+m)¨xb(R-r)cosΔcosθ=0(29)DefiningμRr=μR-rr,theequationofmotionofFPSis[3m(R-r)2+ΜR*2]¨θ+μRr[(m+2Μ)R*˙θ2+2(m+Μ)gcosθ-2(m+Μ)¨xbsinθ]/cosΔ+(m+Μ)gR*sinθ+(Μ+m)¨xbR*cosθ=0(30)3出praceoperation-以asdiphingradius為標志的雙軌道制造模型Whenμ→0,R?r,M?m,andθissmall,therelevantundampedfreevibrationequationcanbeapproximatedas[34m+Μ]R*¨θ+(m+Μ)gθ=0(31)Thenaturalfrequencyofthelinearizedsystemisωn2≈gR*≈g2R(32)Bythesimulation,thecharacteristicofthesystemiscomparedwithasimplependulumwiththemassMandthelength2R(thedoubleradiusofthecylindricalsurface),asdiscoveredintheexperiment.Theseismicisolationcanbedesignedbyshiftingthenaturalfrequencyofthesystem,i.e.tuningtheradiusofthesurface.Intermsofthelinearsystem,theeffectivemassΜ*=34m+Μ,theeffectiveforceF*=(m+M)gθandtheeffectivedampingcoefficientisc*=μRr(m+2Μ)=μR-rr(m+2Μ)(33)Eq.(33)showsthattherollingresistancecoefficientμisapproximatelymultipliedbytheratioofRtoranddoubleofthemassMtoformtheeffectivedampingcoefficientc*.Givenanyparametergroupofthesystemandtheinputbaseacceleration,θ=θ(t)canbeobtainedbynumericallysolvingthedifferentialequation.Applyingtheequationsderivedabove,thehorizontalrelativedisplacement,thevelocity,theacceleration,andtheabsoluteaccelerationofthemasscenterC1canbeobtained.IftheMATLABsimulationisused,S-functionblockiseasilymadeandaddedintothetoolboxwiththeequationofmotion.4whichroles國際習慣法兩種典型的藥品(1)Basedonthekinematicanalysis,FPSwithdualrollerscanbereduced

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論