




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
class-exercises161、1011100010112=
8=2、
(
156
)10
=
(
)23、convert
0.3910
to
anumber
in
radix2.Theprecision
must
achieve10%。ten
minutesclass-exercises161、1011100010112=
5613
8=
B8B2、
(
156
)10
=
(
10011100
)23、將0.3910轉換為二進制數,要求精度達到10%。0.01102Review
of
the
last
lessonPositional
Number
SystemsMSD,LSD,MSB,LSBGeneral
Positional-Number-System
ConversionsA
decimal
fraction
A
number
in
Binary
radixBinary
addition
and
subtraction2.5
Representation
of
NegativeNumbers(負數的表示)Signed-Magnitude
Representation
P34[符號–數值表示法(原碼)]Complement
Number
Systems
P35(補碼數制)Radix-Complement
Representation
P36(基數補碼表示法)Two’s-Complement
Representation
P37(二進制補碼表示法)2.6
Two’s-Complement
Addition
and
Subtraction
P39(二進制補碼的加減法)Table
2-6
P40(十進制數與4位二進制數對照表)2.6.3
Overflow
(溢出)
P412.5.1
Signed-Magnitude
Representationa
number
consists
of
a
magnitude
and
a
symbol indicating
whether
the
magnitudeis
positive
or negative.MSB
as
the
Sign
bit
(0
=
plus,
1
=
minus)[最高有效位表示符號位(
0=正,1=負)]01111111=+12700101110=+4600000000=+011111111=-12710101110=-4610000000=-02.5.1
Signed-MagnitudeRepresentation [符號–數值表示法(原碼)] Two
possible
representations
of
Zero[零有兩種表示(+0、–0)]An
n-bit
signed-magnitude
integer
range
is (n位二進制整數表示范圍):–
(
2n-1
–
1)
~
+
(
2n-1
–
1)– The
signed-magnitude
system
has
an
equalnumber
of
positive
and
negative
integers.P35represent
the
result
with8-bitsigned-magnitude
integer!110-110=?the
signed-magnitude
system
negatesa
number
by
changing
its
sign
.Complement
Number
Systemsitnegates
a
number
bytaking
its
complement
as
definedby the
system.2.5.2 Complement
Number
Systems(補碼數制)radix
–
Complement(基數補碼)Diminished
Radix
–
Complement [基數減1補碼(反碼)]2.5.22.5.2Complement
Number
Systems(補碼數制)an
n-bit
numberDD
=
dn–1dn–2·
· ·d1d0
.The
radix
point
is
on
the
right
and
sothe
number
is
an
integer.
If
anoperation
produces
a
result
that
requiresmore
than
n
digits,
we
throw
away
theextra
highorder
digit(s).
If
a
number
Dis
complemented
twice,
the
result
isD.
(P35)2.5.3
Radix-Complement
RepresentationThe
complement
of
an
n-digit
numberis
obtained
by
subtracting
it
from
r
n
.r’s
complement= r
n
-D(n位數D的基數補碼等于從
r
n
中減去該數)Example
:
Table
2-4
P362.5.3
Radix-ComplementRepresentation2.5.3
Radix-Complement
Representationr’s
complement= r
n
-DIf
D
is
between
1
and
rn
–
1,
thissubtraction
produces another
numberbetween
1
and
r
n
-
1.what
is
the
result
of
the
subtraction,IfD
is
0?2.5.3
Radix-Complement
Representationr’s
complement= r
n
-DIf
D
isbetween1
and
rn
–
1,
thissubtraction
produces
anothernumberbetween1and
r
n
-1.what
is
the
result
ofthesubtraction,
IfD
is
0?
0000000…0
(n-bit)(positive)Diminished
Radix–
ComplementRepresentation[基數減1補碼表示法(反碼)]The
Diminished
Radix
–
Complement
ofan
n-digit
number
is
obtained
bysubtracting
it
from
r
n
-1[
n位數的反碼等于從
rn
–
1
中減去該數]Example:
Table
2-4
,2-5
P.36(r-1)’s
Complement
=
r
n
–
1-D*2.5.6
(P38)there
are
two
representations
of
zero,positive
zero
(00
×
×
×
00)
andnegative
zero
(11
×
×
×
11).2.5.3
Radix-ComplementRepresentation2.5.3
Radix-ComplementRepresentationAdvantager
n
–D=
[(r
n-1)-D]+1This
can
becomplementingplished
bythe
individual
digits
of
D,2.5.4
Two’s
–
Complement
Representation(二進制補碼表示法)Two’s-Complement(二進制補碼的求取):MSB
(the
signbit): 1=minus;
0=plusWeight
of
the
MSB:-2n-13.
The
range
of
representablenumbers
is-(2
n-1)
through
+(2
n-1
-1).Two’s-Complement(二進制補碼的求取)Example
1. Write
the
8-bit
two’
plementrepresentation
for
the
decimal
number:
-119.(若約定字長是一個字節,試求-119的補碼表示。)?=011101112,as
formula(公式):2n-D=
(2n-1-D)+128-1:
1
1
1
1
1
1
1
1subtract(減去)+119; -0
1
1
1
0
1
1
11
0
0
01
0
0
0+
1?plus(加)1:-11910:1
0
0
0
1
0
0
12Two’s-Complement(二進制補碼的求取)Example
1. Write
the
8-bit
two’
plementrepresentation
for
the
decimal
number:
-119.(若約定字長是一個字節,試求-119的補碼表示。)=011101112,?Two’s-Complement(二進制補碼的求取)100010002
+
1
100010012=-11910Example
1. Write
the
8-bit
two’
plementrepresentation
for
the
decimal
number:
-119.(若約定字長是一個字節,試求-119的補碼表示。)=011101112,帶符號位一起按位取反再+1,得到相反數的補碼.表2-61位十進制數與4位二進制數(P40)十進制二進制原碼二進制反碼二進制補碼-8————1000-7111110001001-6111010011010-5110110101011-4110010111100-3101111001101-2101011011110-110011110111101000或00001111或000000001000100010001200100010001030011001100114010001000100501010101010160110011001107011101110111Sumupfor theComplement(總結)1. Positive
number
has
the
same:Sign-Magnitude,Ones’
–
Complement,and
Two’s-
Complement(正數的原碼、反碼、補碼相同)Sumupfor theComplement(總結)Complement
Number
Systemssigned-magnitude
system010001101111(010001)-1710(110001)Complement(總結)(010001)不變-1710(101111)(010001)符號位改-1710變(110001)符號位不變其余按位取反加1.Complement
Number
Systems連同符號位一起按位取反加1.signed-magnitude
system符號位改變Sign
extension(符號位擴展)We
can
convert
an
n-bit
two’
plementnumber
X
into
an
m-bit
one,
but
some
careis
needed.If
m
>
n,
we
must
append
m
-
n
copies
of X’s
sign
bit
to
the
left
of
X
.
That
is,
we pad
a
positive
number
with
0s
and
a negative
one
with
1s;
this
is
called
signextension.If
m
<
n,
we
discard
X’s
n
–
m
leftmost
bits;however,
the
result
is
valid
only
if
allof
the
discarded
bits
are
the
same
asthe sign
bit
of
the
result
.2.6
Two’s
–Complement
Additionand
Subtraction
(二進制補碼的加法和減法)we
define
[x]to
be
the
two’
plementrepresentation
of
x[x+y]=
([x]+[y]
)[x-
y]=
(
[x]+
[-y]
)2.6
Two’s
–Complement
Additionand
Subtrac
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學校新員工管理制度
- 學校研討課管理制度
- 學校足球社管理制度
- 學生周末班管理制度
- 安全及風險管理制度
- 完善職代會管理制度
- 寶寶店人員管理制度
- 實驗室檢測管理制度
- 宣傳部風控管理制度
- 家具廠車間管理制度
- 期末試卷(五)(含答案含聽力原文無聽力音頻)-2024-2025學年人教PEP版英語(新教材)三年級下冊
- 養老護理員四級考試題庫及答案
- 2024-2025 學年八年級英語下學期期末模擬卷 (蘇州專用)原卷
- 2025年大學生創業培訓考試試卷及答案
- 安徽省宿州市碭山縣2023-2024學年八年級下學期期末數學試題
- 2025江蘇鹽城燕舞集團有限公司招聘58人筆試參考題庫附帶答案詳解析
- 車禍現場急救護理規范
- 2025年天津市武清區等5地中考二模歷史試題(含答案)
- 2024-2025 學年七年級英語下學期期末模擬卷 (深圳專用)原卷
- 2025國開電大《個人與團隊管理》形考任務1-10答案
- 浙江省浙南名校聯盟2024-2025學年高二下學期4月期中生物試卷(含答案)
評論
0/150
提交評論