湖北省龍感湖中學2022年中考數學最后沖刺模擬試卷含解析_第1頁
湖北省龍感湖中學2022年中考數學最后沖刺模擬試卷含解析_第2頁
湖北省龍感湖中學2022年中考數學最后沖刺模擬試卷含解析_第3頁
湖北省龍感湖中學2022年中考數學最后沖刺模擬試卷含解析_第4頁
湖北省龍感湖中學2022年中考數學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省龍感湖中學2022年中考數學最后沖刺模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.“可燃冰”的開發成功,拉開了我國開發新能源的大門,目前發現我國南海“可燃冰”儲存量達到800億噸,將800億用科學記數法可表示為()A.0.8×1011 B.8×1010 C.80×109 D.800×1082.的算術平方根是()A.4 B.±4 C.2 D.±23.計算(—2)2-3的值是()A、1B、2C、—1D、—24.為了紀念物理學家費米,物理學界以費米(飛米)作為長度單位.已知1飛米等于0.000000000000001米,把0.000000000000001這個數用科學記數法表示為()A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣125.數據4,8,4,6,3的眾數和平均數分別是()A.5,4 B.8,5 C.6,5 D.4,56.如圖所示是放置在正方形網格中的一個,則的值為()A. B. C. D.7.已知一個多邊形的每一個外角都相等,一個內角與一個外角的度數之比是3:1,這個多邊形的邊數是A.8 B.9 C.10 D.128.如圖,點C、D是線段AB上的兩點,點D是線段AC的中點.若AB=10cm,BC=4cm,則線段DB的長等于()A.2cm B.3cm C.6cm D.7cm9.若一組數據2,3,4,5,x的平均數與中位數相等,則實數x的值不可能是()A.6 B.3.5 C.2.5 D.110.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內部.將AF延長交邊BC于點G.若,則(用含k的代數式表示).12.化簡:3213.如圖,在Rt△ABC中,E是斜邊AB的中點,若AB=10,則CE=____.14.下列圖形是用火柴棒擺成的“金魚”,如果第1個圖形需要8根火柴,則第2個圖形需要14根火柴,第根圖形需要____________根火柴.15.如圖,正方形ABCD邊長為3,連接AC,AE平分∠CAD,交BC的延長線于點E,FA⊥AE,交CB延長線于點F,則EF的長為__________.16.如圖,在每個小正方形的邊長為1的網格中,點O,A,B,M均在格點上,P為線段OM上的一個動點.(1)OM的長等于_______;(2)當點P在線段OM上運動,且使PA2+PB2取得最小值時,請借助網格和無刻度的直尺,在給定的網格中畫出點P的位置,并簡要說明你是怎么畫的.17.計算:﹣1﹣2=_____.三、解答題(共7小題,滿分69分)18.(10分)一個不透明的口袋中有四個完全相同的小球,把它們分別標號為1,2,3,4.隨機摸取一個小球然后放回,再隨機摸出一個小球,求下列事件的概率:兩次取出的小球標號相同;兩次取出的小球標號的和等于4.19.(5分)已知關于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個不相等的實數根.(1)求m的取值范圍;(2)若m為非負整數,且該方程的根都是無理數,求m的值.20.(8分)如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點,修建一個土特產加工基地,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應建在離A站多少千米的地方?21.(10分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.22.(10分)如圖,AB∥CD,E、F分別為AB、CD上的點,且EC∥BF,連接AD,分別與EC、BF相交與點G、H,若AB=CD,求證:AG=DH.23.(12分)請根據圖中提供的信息,回答下列問題:(1)一個水瓶與一個水杯分別是多少元?(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規定:這兩種商品都打八折;乙商場規定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和n(n>10,且n為整數)個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)24.(14分)已知,在平面直角坐標系xOy中,拋物線L:y=x2-4x+3與x軸交于A,B兩點(點A在點B的左側),頂點為C.(1)求點C和點A的坐標.(2)定義“L雙拋圖形”:直線x=t將拋物線L分成兩部分,首先去掉其不含頂點的部分,然后作出拋物線剩余部分關于直線x=t的對稱圖形,得到的整個圖形稱為拋物線L關于直線x=t的“L雙拋圖形”(特別地,當直線x=t恰好是拋物線的對稱軸時,得到的“L雙拋圖形”不變),①當t=0時,拋物線L關于直找x=0的“L雙拋圖形”如圖所示,直線y=3與“L雙拋圖形”有______個交點;②若拋物線L關于直線x=t的“L雙拋圖形”與直線y=3恰好有兩個交點,結合圖象,直接寫出t的取值范圍:______;③當直線x=t經過點A時,“L雙拋圖形”如圖所示,現將線段AC所在直線沿水平(x軸)方向左右平移,交“L雙拋圖形”于點P,交x軸于點Q,滿足PQ=AC時,求點P的坐標.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:將800億用科學記數法表示為:8×1.

故選:B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.2、C【解析】

先求出的值,然后再利用算術平方根定義計算即可得到結果.【詳解】=4,4的算術平方根是2,所以的算術平方根是2,故選C.【點睛】本題考查了算術平方根,熟練掌握算術平方根的定義是解本題的關鍵.3、A【解析】本題考查的是有理數的混合運算根據有理數的加法、乘方法則,先算乘方,再算加法,即得結果。解答本題的關鍵是掌握好有理數的加法、乘方法則。4、A【解析】

根據科學記數法的表示方法解答.【詳解】解:把這個數用科學記數法表示為.故選:.【點睛】此題重點考查學生對科學記數法的應用,熟練掌握小于0的數用科學記數法表示法是解題的關鍵.5、D【解析】

根據眾數的定義找出出現次數最多的數,再根據平均數的計算公式求出平均數即可【詳解】∵4出現了2次,出現的次數最多,∴眾數是4;這組數據的平均數是:(4+8+4+6+3)÷5=5;故選D.6、D【解析】

首先過點A向CB引垂線,與CB交于D,表示出BD、AD的長,根據正切的計算公式可算出答案.【詳解】解:過點A向CB引垂線,與CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故選:D.【點睛】此題主要考查了銳角三角函數的定義,關鍵是掌握正切:銳角A的對邊a與鄰邊b的比叫做∠A的正切,記作tanA.7、A【解析】試題分析:設這個多邊形的外角為x°,則內角為3x°,根據多邊形的相鄰的內角與外角互補可的方程x+3x=180,解可得外角的度數,再用外角和除以外角度數即可得到邊數.解:設這個多邊形的外角為x°,則內角為3x°,由題意得:x+3x=180,解得x=45,這個多邊形的邊數:360°÷45°=8,故選A.考點:多邊形內角與外角.8、D【解析】【分析】先求AC,再根據點D是線段AC的中點,求出CD,再求BD.【詳解】因為,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因為,點D是線段AC的中點,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故選D【點睛】本題考核知識點:線段的中點,和差.解題關鍵點:利用線段的中點求出線段長度.9、C【解析】

因為中位數的值與大小排列順序有關,而此題中x的大小位置未定,故應該分類討論x所處的所有位置情況:從小到大(或從大到小)排列在中間;結尾;開始的位置.【詳解】(1)將這組數據從小到大的順序排列為2,3,4,5,x,

處于中間位置的數是4,

∴中位數是4,

平均數為(2+3+4+5+x)÷5,

∴4=(2+3+4+5+x)÷5,

解得x=6;符合排列順序;

(2)將這組數據從小到大的順序排列后2,3,4,x,5,

中位數是4,

此時平均數是(2+3+4+5+x)÷5=4,

解得x=6,不符合排列順序;

(3)將這組數據從小到大的順序排列后2,3,x,4,5,

中位數是x,

平均數(2+3+4+5+x)÷5=x,

解得x=3.5,符合排列順序;

(4)將這組數據從小到大的順序排列后2,x,3,4,5,

中位數是3,

平均數(2+3+4+5+x)÷5=3,

解得x=1,不符合排列順序;

(5)將這組數據從小到大的順序排列后x,2,3,4,5,

中位數是3,

平均數(2+3+4+5+x)÷5=3,

解得x=1,符合排列順序;

∴x的值為6、3.5或1.

故選C.【點睛】考查了確定一組數據的中位數,涉及到分類討論思想,較難,要明確中位數的值與大小排列順序有關,一些學生往往對這個概念掌握不清楚,計算方法不明確而解答不完整.注意找中位數的時候一定要先排好順序,然后再根據奇數和偶數個來確定中位數.如果數據有奇數個,則正中間的數字即為所求;如果是偶數個,則找中間兩位數的平均數.10、A【解析】

用最高氣溫減去最低氣溫,再根據有理數的減法運算法則“減去一個數等于加上這個數的相反數”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.二、填空題(共7小題,每小題3分,滿分21分)11、。【解析】試題分析:如圖,連接EG,∵,∴設,則。∵點E是邊CD的中點,∴。∵△ADE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴。∴。∴在Rt△ABG中,由勾股定理得:,即。∴。∴(只取正值)。∴。12、-6【解析】

根據二次根式的乘法運算法則以及絕對值的性質和二次根式的化簡分別化簡整理得出即可:【詳解】32故答案為-613、5【解析】試題分析:根據直角三角形斜邊上的中線等于斜邊的一半,可得CE=AB=5.考點:直角三角形斜邊上的中線.14、【解析】

根據圖形可得每增加一個金魚就增加6根火柴棒即可解答.【詳解】第一個圖中有8根火柴棒組成,第二個圖中有8+6個火柴棒組成,第三個圖中有8+2×6個火柴組成,……∴組成n個系列正方形形的火柴棒的根數是8+6(n-1)=6n+2.故答案為6n+2【點睛】本題考查數字規律問題,通過歸納與總結,得到其中的規律是解題關鍵.15、6【解析】

利用正方形的性質和勾股定理可得AC的長,由角平分線的性質和平行線的性質可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的長.【詳解】解:∵四邊形ABCD為正方形,且邊長為3,∴AC=3,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=3,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴CF=AC=3,∴EF=CF+CE=3+3=616、(1)4;(2)見解析;【解析】

解:(1)由勾股定理可得OM的長度(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求。【詳解】(1)OM==4;故答案為4.(2)以點O為原點建立直角坐標系,則A(1,0),B(4,0),設P(a,a),(0≤a≤4),∵PA2=(a﹣1)2+a2,PB2=(a﹣4)2+a2,∴PA2+PB2=4(a﹣)2+,∵0≤a≤4,∴當a=時,PA2+PB2取得最小值,綜上,需作出點P滿足線段OP的長=;取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR交OM于P,則點P即為所求.【點睛】(1)根據勾股定理即可得到結論;(2)取格點F,E,連接EF,得到點N,取格點S,T,連接ST,得到點R,連接NR即可得到結果.17、-3【解析】-1-2=-1+(-2)=-(1+2)=-3,故答案為-3.三、解答題(共7小題,滿分69分)18、(1)(2)【解析】

試題分析:首先根據題意進行列表,然后求出各事件的概率.試題解析:(1)P(兩次取得小球的標號相同)=;(2)P(兩次取得小球的標號的和等于4)=.考點:概率的計算.19、(1)m<2;(2)m=1.【解析】

(1)利用方程有兩個不相等的實數根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;

(2)先利用m的范圍得到m=3或m=1,再分別求出m=3和m=1時方程的根,然后根據根的情況確定滿足條件的m的值.【詳解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有兩個不相等的實數根,∴△>3.即﹣8m+2>3.解得m<2;(2)∵m<2,且m為非負整數,∴m=3或m=1,當m=3時,原方程為x2-2x-3=3,解得x1=3,x2=﹣1(不符合題意舍去),當m=1時,原方程為x2﹣2=3,解得x1=,x2=﹣,綜上所述,m=1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=3(a≠3)的根與△=b2-4ac有如下關系:當△>3時,方程有兩個不相等的實數根;當△=3時,方程有兩個相等的實數根;當△<3時,方程無實數根.20、20千米【解析】

由勾股定理兩直角邊的平方和等于斜邊的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜邊相等兩次利用勾股定理得到AD2+AE2=BE2+BC2,設AE為x,則BE=10﹣x,將DA=8,CB=2代入關系式即可求得.【詳解】解:設基地E應建在離A站x千米的地方.則BE=(50﹣x)千米在Rt△ADE中,根據勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根據勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D兩村到E點的距離相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E應建在離A站20千米的地方.考點:勾股定理的應用.21、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當點E運動到(1,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點A、C的坐標分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據二次函數的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P1,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質及勾股定理就可以求出結論;(3)由二次函數的解析式可求出B點的坐標,從而可求出BC的解析式,從而可設設E點的坐標,進而可表示出F的坐標,由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關系式,由二次函數的性質就可以求出結論.試題解析:(1)∵拋物線y=﹣x1+mx+n經過A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當y=0時,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過點C作CM⊥EF于M,設E(a,﹣a+1),F(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時,S四邊形CDBF的面積最大=,∴E(1,1).考點:1、勾股定理;1、等腰三角形的性質;3、四邊形的面積;2、二次函數的最值22、證明見解析.【解析】【分析】利用AAS先證明?ABH≌?DCG,根據全等三角形的性質可得AH=DG,再根據AH=AG+GH,DG=DH+GH即可證得AG=HD.【詳解】∵AB∥CD,∴∠A=∠D,∵CE∥BF,∴∠AHB=∠DGC,在?ABH和?DCG中,,∴?ABH≌?DCG(AAS),∴AH=DG,∵AH=AG+GH,DG=DH+GH,∴AG=HD.【點睛】本題考查了全等三角形的判定與性質,熟練掌握全等三角形的判定與性質是解題的關鍵.23、(1)一個水瓶40元,一個水杯是8元;(2)當10<n<25時,選擇乙商場購買更合算.當n>25時,選擇甲商場購買更合算.【解析】

(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據題意列出方程,求出方程的解即可得到結果;(2)計算出兩商場得費用,比較即可得到結果.【詳解】解:(1)設一個水瓶x元,表示出一個水杯為(48﹣x)元,根據題意得:3x+4(48﹣x)=152,解得:x=40,則一個水瓶40元,一個水杯是8元;(2)甲商場所需費用為(40×5+8n)×80%=160+6.4n乙商場所需費用為5×40+(n﹣5×2)×8=120+8n則∵n>10,且n為整數,∴160+6.4n﹣(120+8n)=40﹣1.6n討論:當10<n<25時,40﹣1.6n>0,160+0.64n>120+8n,∴選擇乙商場購買更合算.當n>25時,40﹣1.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論