




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.點P(﹣2,5)關于y軸對稱的點的坐標為()A.(2,﹣5) B.(5,﹣2) C.(﹣2,﹣5) D.(2,5)2.某種微生物半徑約為0.00000637米,該數字用科學記數法可表示為()A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣73.如圖是由若干個小正方體塊搭成的幾何體的俯視圖,小正方塊中的數字表示在該位置的小正方體塊的個數,那么這個幾何體的主視圖是()A. B. C. D.4.如圖,AB∥CD,FE⊥DB,垂足為E,∠1=60°,則∠2的度數是()A.60° B.50° C.40° D.30°5.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.26.在一個不透明的口袋里有紅、黃、藍三種顏色的小球,這些球除顏色外都相同,其中有5個紅球,4個藍球.若隨機摸出一個藍球的概率為,則隨機摸出一個黃球的概率為()A. B. C. D.7.實數a在數軸上的位置如圖所示,則化簡后為()A.7 B.﹣7 C.2a﹣15 D.無法確定8.若x=-2是關于x的一元二次方程x2-ax+a2=0的一個根,則a的值為()A.1或4 B.-1或-4 C.-1或4 D.1或-49.|–|的倒數是()A.–2 B.– C. D.210.已知正方形ABCD的邊長為4cm,動點P從A出發,沿AD邊以1cm/s的速度運動,動點Q從B出發,沿BC,CD邊以2cm/s的速度運動,點P,Q同時出發,運動到點D均停止運動,設運動時間為x(秒),△BPQ的面積為y(cm2),則y與x之間的函數圖象大致是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.將161000用科學記數法表示為1.61×10n,則n的值為________.12.不解方程,判斷方程2x2+3x﹣2=0的根的情況是_____.13.如圖,已知點A是反比例函數的圖象上的一個動點,連接OA,若將線段OA繞點O順時針旋轉90°得到線段OB,則點B所在圖象的函數表達式為______.14.如圖所示,平行四邊形ABCD中,E、F是對角線BD上兩點,連接AE、AF、CE、CF,添加__________條件,可以判定四邊形AECF是平行四邊形.(填一個符合要求的條件即可)15.王英同學從A地沿北偏西60°方向走100米到B地,再從B地向正南方向走200米到C地,此時王英同學離A地的距離是_____米.16.如圖,小紅將一個正方形紙片剪去一個寬為4cm的長條后,再從剩下的長方形紙片上剪去一個寬為5cm的長條,且剪下的兩個長條的面積相等.問這個正方形的邊長應為多少厘米?設正方形邊長為xcm,則可列方程為_____.17.若反比例函數y=的圖象在每一個象限中,y隨著x的增大而減小,則m的取值范圍是_____.三、解答題(共7小題,滿分69分)18.(10分)據城市速遞報道,我市一輛高為2.5米的客車,卡在快速路引橋上高為2.55米的限高桿的上端,已知引橋的坡角∠ABC為14°,請結合示意圖,用你學過的知識通過數據說明客車不能通過的原因.(參考數據:sin14°=0.24,cos14°=0.97,tan14°=0.25)19.(5分)校園空地上有一面墻,長度為20m,用長為32m的籬笆和這面墻圍成一個矩形花圃,如圖所示.能圍成面積是126m2的矩形花圃嗎?若能,請舉例說明;若不能,請說明理由.若籬笆再增加4m,圍成的矩形花圃面積能達到170m2嗎?請說明理由.20.(8分)如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC,AB于點E,F.(1)若∠B=30°,求證:以A,O,D,E為頂點的四邊形是菱形;(2)填空:若AC=6,AB=10,連接AD,則⊙O的半徑為,AD的長為.21.(10分)如圖,△BAD是由△BEC在平面內繞點B旋轉60°而得,且AB⊥BC,BE=CE,連接DE.求證:△BDE≌△BCE;試判斷四邊形ABED的形狀,并說明理由.22.(10分)對于某一函數給出如下定義:若存在實數p,當其自變量的值為p時,其函數值等于p,則稱p為這個函數的不變值.在函數存在不變值時,該函數的最大不變值與最小不變值之差q稱為這個函數的不變長度.特別地,當函數只有一個不變值時,其不變長度q為零.例如:下圖中的函數有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G2,函數G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.23.(12分)《如果想毀掉一個孩子,就給他一部手機!》這是2017年微信圈一篇熱傳的文章.國際上,法國教育部宣布從2018年9月新學期起小學和初中禁止學生使用手機.為了解學生手機使用情況,某學校開展了“手機伴我健康行”主題活動,他們隨機抽取部分學生進行“使用手機目的”和“每周使用手機的時間”的問卷調查,并繪制成如圖①,②的統計圖,已知“查資料”的人數是40人.請你根據以上信息解答下列問題:在扇形統計圖中,“玩游戲”對應的百分比為,圓心角度數是度;補全條形統計圖;該校共有學生2100人,估計每周使用手機時間在2小時以上(不含2小時)的人數.24.(14分)圖1所示的遮陽傘,傘柄垂直于水平地面,其示意圖如圖2、當傘收緊時,點P與點A重合;當傘慢慢撐開時,動點P由A向B移動;當點P到達點B時,傘張得最開、已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、設AP=x分米.(1)求x的取值范圍;(2)若∠CPN=60°,求x的值;(3)設陽光直射下,傘下的陰影(假定為圓面)面積為y,求y關于x的關系式(結果保留π).
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
根據關于y軸對稱點的坐標特點:橫坐標互為相反數,縱坐標不變可得答案.【詳解】點關于y軸對稱的點的坐標為,故選:D.【點睛】本題主要考查了平面直角坐標系中點的對稱,熟練掌握點的對稱特點是解決本題的關鍵.2、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】0.00000637的小數點向右移動6位得到6.37所以0.00000637用科學記數法表示為6.37×10﹣6,故選B.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.3、B【解析】
根據俯視圖可確定主視圖的列數和每列小正方體的個數.【詳解】由俯視圖可得,主視圖一共有兩列,左邊一列由兩個小正方體組成,右邊一列由3個小正方體組成.故答案選B.【點睛】由幾何體的俯視圖可確定該幾何體的主視圖和左視圖.4、D【解析】
由EF⊥BD,∠1=60°,結合三角形內角和為180°即可求出∠D的度數,再由“兩直線平行,同位角相等”即可得出結論.【詳解】解:在△DEF中,∠1=60°,∠DEF=90°,
∴∠D=180°-∠DEF-∠1=30°.
∵AB∥CD,
∴∠2=∠D=30°.
故選D.【點睛】本題考查平行線的性質以及三角形內角和為180°,解題關鍵是根據平行線的性質,找出相等、互余或互補的角.5、A【解析】試題分析:先根據折疊的性質得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了勾股定理.6、A【解析】
設黃球有x個,根據摸出一個球是藍球的概率是,得出黃球的個數,再根據概率公式即可得出隨機摸出一個黃球的概率.【詳解】解:設袋子中黃球有x個,根據題意,得:,解得:x=3,即袋中黃球有3個,所以隨機摸出一個黃球的概率為,故選A.【點睛】此題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數與總情況數之比.得到所求的情況數是解決本題的關鍵.7、C【解析】
根據數軸上點的位置判斷出a﹣4與a﹣11的正負,原式利用二次根式性質及絕對值的代數意義化簡,去括號合并即可得到結果.【詳解】解:根據數軸上點的位置得:5<a<10,∴a﹣4>0,a﹣11<0,則原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故選:C.【點睛】此題考查了二次根式的性質與化簡,以及實數與數軸,熟練掌握運算法則是解本題的關鍵.8、B【解析】
試題分析:把x=﹣2代入關于x的一元二次方程x2﹣ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案選B.考點:一元二次方程的解;一元二次方程的解法.9、D【解析】
根據絕對值的性質,可化簡絕對值,根據倒數的意義,可得答案.【詳解】|?|=,的倒數是2;∴|?|的倒數是2,故選D.【點睛】本題考查了實數的性質,分子分母交換位置是求一個數倒數的關鍵.10、B【解析】
根據題意,Q點分別在BC、CD上運動時,形成不同的三角形,分別用x表示即可.【詳解】(1)當0≤x≤2時,BQ=2x當2≤x≤4時,如下圖由上可知故選:B.【點睛】本題是雙動點問題,解答時要注意討論動點在臨界兩側時形成的不同圖形,并要根據圖形列出函數關系式.二、填空題(共7小題,每小題3分,滿分21分)11、5【解析】
【科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】∵161000=1.61×105.∴n=5.故答案為5.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.12、有兩個不相等的實數根.【解析】分析:先求一元二次方程的判別式,由△與0的大小關系來判斷方程根的情況.詳解:∵a=2,b=3,c=?2,∴∴一元二次方程有兩個不相等的實數根.故答案為有兩個不相等的實數根.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.13、【解析】∵點A是反比例函數的圖象上的一個動點,設A(m,n),過A作AC⊥x軸于C,過B作BD⊥x軸于D,∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,在△ACO與△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),∵mn=﹣2,∴n(﹣m)=2,∴點B所在圖象的函數表達式為,故答案為:.14、BE=DF【解析】可以添加的條件有BE=DF等;證明:∵四邊形ABCD是平行四邊形,∴AB=CD,∠ABD=∠CDB;又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.
∴∠AEF=∠CFE.∴AE∥CF;∴四邊形AECF是平行四邊形.(一組對邊平行且相等的四邊形是平行四邊形)故答案為BE=DF.15、100【解析】先在直角△ABE中利用三角函數求出BE和AE,然后在直角△ACF中,利用勾股定理求出AC.解:如圖,作AE⊥BC于點E.∵∠EAB=30°,AB=100,∴BE=50,AE=50.∵BC=200,∴CE=1.在Rt△ACE中,根據勾股定理得:AC=100.即此時王英同學離A地的距離是100米.故答案為100.解一般三角形的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.16、4x=5(x-4)【解析】按照面積作為等量關系列方程有4x=5(x﹣4).17、m>1【解析】∵反比例函數的圖象在其每個象限內,y隨x的增大而減小,∴>0,解得:m>1,故答案為m>1.三、解答題(共7小題,滿分69分)18、客車不能通過限高桿,理由見解析【解析】
根據DE⊥BC,DF⊥AB,得到∠EDF=∠ABC=14°.在Rt△EDF中,根據cos∠EDF=,求出DF的值,即可判斷.【詳解】∵DE⊥BC,DF⊥AB,∴∠EDF=∠ABC=14°.在Rt△EDF中,∠DFE=90°,∵cos∠EDF=,∴DF=DE?cos∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高桿頂端到橋面的距離DF為2.1米,小于客車高2.5米,∴客車不能通過限高桿.【點睛】考查解直角三角形,選擇合適的銳角三角函數是解題的關鍵.19、(1)長為18米、寬為7米或長為14米、寬為9米;(1)若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.【解析】
(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,再根據矩形面積公式列方程求解即可得到答案.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,再根據矩形面積公式列方程,求得方程無解,即假設不成立.【詳解】(1)假設能,設AB的長度為x米,則BC的長度為(31﹣1x)米,根據題意得:x(31﹣1x)=116,解得:x1=7,x1=9,∴31﹣1x=18或31﹣1x=14,∴假設成立,即長為18米、寬為7米或長為14米、寬為9米.(1)假設能,設AB的長度為y米,則BC的長度為(36﹣1y)米,根據題意得:y(36﹣1y)=172,整理得:y1﹣18y+85=2.∵△=(﹣18)1﹣4×1×85=﹣16<2,∴該方程無解,∴假設不成立,即若籬笆再增加4m,圍成的矩形花圃面積不能達到172m1.20、(1)見解析;(2)【解析】
(1)先通過證明△AOE為等邊三角形,得出AE=OD,再根據“同位角相等,兩直線平行”證明AE//OD,從而證得四邊形AODE是平行四邊形,再根據“一組鄰邊相等的平行四邊形為菱形”即可得證.(2)利用在Rt△OBD中,sin∠B==可得出半徑長度,在Rt△ODB中BD=,可求得BD的長,由CD=CB﹣BD可得CD的長,在RT△ACD中,AD=,即可求出AD長度.【詳解】解:(1)證明:連接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等邊三角形,∴AE=OE=AO∵OD=OA,∴AE=OD∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四邊形AODE是平行四邊形,∵OD=OA∴四邊形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【點睛】本題主要考查圓中的計算問題、菱形以及相似三角形的判定與性質21、證明見解析.【解析】
(1)根據旋轉的性質可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據垂直可得出∠DBE=∠CBE=30°,繼而可根據SAS證明△BDE≌△BCE;(2)根據(1)以及旋轉的性質可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.【詳解】(1)證明:∵△BAD是由△BEC在平面內繞點B旋轉60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四邊形ABED為菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋轉而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四邊形ABED為菱形.考點:旋轉的性質;全等三角形的判定與性質;菱形的判定.22、詳見解析.【解析】試題分析:(1)根據定義分別求解即可求得答案;(1)①首先由函數y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不變長度為零,求得答案;②由①,利用1≤b≤3,可求得其不變長度q的取值范圍;(3)由記函數y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G1,可得函數G的圖象關于x=m對稱,然后根據定義分別求得函數的不變值,再分類討論即可求得答案.試題解析:解:(1)∵函數y=x﹣1,令y=x,則x﹣1=x,無解;∴函數y=x﹣1沒有不變值;∵y=x-1=,令y=x,則,解得:x=±1,∴函數的不變值為±1,q=1﹣(﹣1)=1.∵函數y=x1,令y=x,則x=x1,解得:x1=2,x1=1,∴函數y=x1的不變值為:2或1,q=1﹣2=1;(1)①函數y=1x1﹣bx,令y=x,則x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵記函數y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G1,∴函數G的圖象關于x=m對稱,∴G:y=.∵當x1﹣1x=x時,x3=2,x4=3;當(1m﹣x)1﹣1(1m﹣x)=x時,△=1+8m,當△<2,即m<﹣時,q=x4﹣x3=3;當△≥2,即m≥﹣時,x5=,x6=.①當﹣≤m≤2時,x3=2,x4=3,∴x6<2,∴x4﹣x6>3(不符合題意,舍去);②∵當x5=x4時,m=1,當x6=x3時,m=3;當2<m<1時,x3=2(舍去),x4=3,此時2<x5<x4,x6<2,q=x4﹣x6>3(舍去);當1≤m≤3時,x3=2(舍去),x4=3,此時2<x5<x4,x6>2,q=x4﹣x6<3;當m>3時,x3=2(舍去),x4=3(舍去),此時x5>3,x6<2,q=x5﹣x6>3(舍去);綜上所述:m的取值范圍為1≤m≤3或m<﹣.點睛:本題屬于二次函數的綜合題,考查了二次函數、反比例函數、一次函數的性質以及函數的對稱性.注意掌握分類討論思想的應用是解答此題的關鍵.23、(1)35%,126;(2)見解析;(3)1344人【解析】
(1)由扇形統計圖其他的百分比求出“玩游戲”的百分比,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲加盟店經營管理規范合同
- 城市更新中的不動產登記專題學習
- 大學空中面試題庫及答案
- 美術教學色彩課件
- 心力衰竭培訓課件
- 關于安全的合理化建議
- 衛生院安全生產月活動開展情況
- 重慶市安全生產條例
- 村里安全生產排查
- 北京交警事故處理電話
- 《全國統一安裝工程預算定額》工程量計算規則
- translated-NCCN臨床實踐指南:非小細胞肺癌(中文版2022.V5)
- 衛生部手術分級目錄(2023年1月份修訂)
- LY/T 2121-2013檀香栽培技術規程
- GB/T 8312-2002茶咖啡堿測定
- 護士注冊健康體檢表下載【可直接打印版本】
- 骨科出科試題帶答案
- 河道基槽土方開挖專項施工方案
- 現代美國玉米商業育種的種質基礎概要
- GB∕T 4162-2022 鍛軋鋼棒超聲檢測方法
- 中醫治療室工作制度管理辦法
評論
0/150
提交評論