


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023高考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點P在橢圓τ:=1(a>b>0)上,點P在第一象限,點P關于原點O的對稱點為A,點P關于x軸的對稱點為Q,設,直線AD與橢圓τ的另一個交點為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.2.設直線過點,且與圓:相切于點,那么()A. B.3 C. D.13.對于定義在上的函數,若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數 B.在上是增函數C.不是函數的最小值 D.對于,都有4.已知中,角、所對的邊分別是,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分必要條件5.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.6.已知集合,則()A. B. C. D.7.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.8.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.9.記等差數列的公差為,前項和為.若,,則()A. B. C. D.10.已知,若則實數的取值范圍是()A. B. C. D.11.我國古代數學家秦九韶在《數書九章》中記述了“三斜求積術”,用現代式子表示即為:在中,角所對的邊分別為,則的面積.根據此公式,若,且,則的面積為()A. B. C. D.12.已知排球發球考試規則:每位考生最多可發球三次,若發球成功,則停止發球,否則一直發到次結束為止.某考生一次發球成功的概率為,發球次數為,若的數學期望,則的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設數列的前n項和為,且,若,則______________.14.將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個組的概率為__________.15.某部隊在訓練之余,由同一場地訓練的甲?乙?丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰士既不在同一行,也不在同一列的概率為______.16.已知,且,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知△ABC三內角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.18.(12分)選修4-4:坐標系與參數方程:在平面直角坐標系中,曲線:(為參數),在以平面直角坐標系的原點為極點、軸的正半軸為極軸,且與平面直角坐標系取相同單位長度的極坐標系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標方程;(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標.19.(12分)在平面直角坐標系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.20.(12分)某商場以分期付款方式銷售某種商品,根據以往資料統計,顧客購買該商品選擇分期付款的期數的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(ⅰ)求的分布列;(ⅱ)若,求的數學期望的最大值.21.(12分)某景點上山共有級臺階,寓意長長久久.甲上臺階時,可以一步走一個臺階,也可以一步走兩個臺階,若甲每步上一個臺階的概率為,每步上兩個臺階的概率為.為了簡便描述問題,我們約定,甲從級臺階開始向上走,一步走一個臺階記分,一步走兩個臺階記分,記甲登上第個臺階的概率為,其中,且.(1)若甲走步時所得分數為,求的分布列和數學期望;(2)證明:數列是等比數列;(3)求甲在登山過程中,恰好登上第級臺階的概率.22.(10分)已知橢圓的左右焦點分別是,點在橢圓上,滿足(1)求橢圓的標準方程;(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補,且與橢圓交于異于點的兩點,與直線交于點(介于兩點之間),是否存在直線,使得直線,,的斜率按某種排序能構成等比數列?若能,求出的方程,若不能,請說理由.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【答案解析】
設,則,,,設,根據化簡得到,得到答案.【題目詳解】設,則,,,則,設,則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【答案點睛】本題考查了橢圓的離心率,意在考查學生的計算能力和轉化能力.2.B【答案解析】
過點的直線與圓:相切于點,可得.因此,即可得出.【題目詳解】由圓:配方為,,半徑.∵過點的直線與圓:相切于點,∴;∴;故選:B.【答案點睛】本小題主要考查向量數量積的計算,考查圓的方程,屬于基礎題.3.B【答案解析】
根據函數對稱性和單調性的關系,進行判斷即可.【題目詳解】由得關于對稱,若關于對稱,則函數在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數,在在上是增函數,則為函數的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【答案點睛】本題主要考查函數性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵.4.D【答案解析】
由大邊對大角定理結合充分條件和必要條件的定義判斷即可.【題目詳解】中,角、所對的邊分別是、,由大邊對大角定理知“”“”,“”“”.因此,“”是“”的充分必要條件.故選:D.【答案點睛】本題考查充分條件、必要條件的判斷,考查三角形的性質等基礎知識,考查邏輯推理能力,是基礎題.5.D【答案解析】
以BC的中點為坐標原點,建立直角坐標系,可得,設,運用向量的坐標表示,求得點A的軌跡,進而得到關于a的二次函數,可得最小值.【題目詳解】以BC的中點為坐標原點,建立如圖的直角坐標系,可得,設,由,可得,即,則,當時,的最小值為.故選D.【答案點睛】本題考查向量數量積的坐標表示,考查轉化思想和二次函數的值域解法,考查運算能力,屬于中檔題.6.A【答案解析】
考慮既屬于又屬于的集合,即得.【題目詳解】.故選:【答案點睛】本題考查集合的交運算,屬于基礎題.7.D【答案解析】
本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關性質判斷出三角形的形狀并求出高的長度,的長度即點縱坐標,然后將點縱坐標帶入圓的方程即可得出點坐標,最后將點坐標帶入雙曲線方程即可得出結果。【題目詳解】根據題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據雙曲線性質可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標為,將點縱坐標帶入圓的方程中可得,解得,,將點坐標帶入雙曲線中可得,化簡得,,,,故選D。【答案點睛】本題考查了圓錐曲線的相關性質,主要考察了圓與雙曲線的相關性質,考查了圓與雙曲線的綜合應用,考查了數形結合思想,體現了綜合性,提高了學生的邏輯思維能力,是難題。8.B【答案解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.9.C【答案解析】
由,和,可求得,從而求得和,再驗證選項.【題目詳解】因為,,所以解得,所以,所以,,,故選:C.【答案點睛】本題考查等差數列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.10.C【答案解析】
根據,得到有解,則,得,,得到,再根據,有,即,可化為,根據,則的解集包含求解,【題目詳解】因為,所以有解,即有解,所以,得,,所以,又因為,所以,即,可化為,因為,所以的解集包含,所以或,解得,故選:C【答案點睛】本題主要考查一元二次不等式的解法及集合的關系的應用,還考查了運算求解的能力,屬于中檔題,11.A【答案解析】
根據,利用正弦定理邊化為角得,整理為,根據,得,再由余弦定理得,又,代入公式求解.【題目詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【答案點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.12.A【答案解析】
根據題意,分別求出再根據離散型隨機變量期望公式進行求解即可【題目詳解】由題可知,,,則解得,由可得,答案選A【答案點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發球分為兩種情況:三次都不成功、第三次成功二、填空題:本題共4小題,每小題5分,共20分。13.9【答案解析】
用換中的n,得,作差可得,從而數列是等比數列,再由即可得到答案.【題目詳解】由,得,兩式相減,得,即;又,解得,所以數列為首項為-3、公比為3的等比數列,所以.故答案為:9.【答案點睛】本題考查已知與的關系求數列通項的問題,要注意n的范圍,考查學生運算求解能力,是一道中檔題.14.【答案解析】
先求出總的基本事件數,再求出甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件數,然后根據古典概型求解.【題目詳解】6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發宣傳資料的基本事件總數共有個,甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個數有:個,所以甲、乙至少一人參加指揮交通且甲、丙不在同一組的概率為.故答案為:【答案點睛】本題主要考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是中檔題.15.【答案解析】
分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【題目詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰士既不在同一行,也不在同一列的概率.故答案為:.【答案點睛】本題考查了分步計數原理,排列與組合知識,考查了轉化能力,屬于中檔題.16.【答案解析】試題分析:因,故,所以,,應填.考點:三角變換及運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)或.【答案解析】
(1)利用正弦定理對已知代數式化簡,根據余弦定理求解余弦值;(2)根據余弦定理求出b=1或b=3,結合面積公式求解.【題目詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【答案點睛】此題考查利用正余弦定理求解三角形,關鍵在于熟練掌握正弦定理進行邊角互化,利用余弦定理求解邊長,根據面積公式求解面積.18.(1),;(2),,.【答案解析】
(1)把曲線的參數方程與曲線的極坐標方程分別轉化為直角坐標方程;(2)利用圖象求出三個點的極徑與極角.【題目詳解】解:(1)由消去參數得,即曲線的普通方程為,又由得即為,即曲線的平面直角坐標方程為(2)∵圓心到曲線:的距離,如圖所示,所以直線與圓的切點以及直線與圓的兩個交點,即為所求.∵,則,直線的傾斜角為,即點的極角為,所以點的極角為,點的極角為,所以三個點的極坐標為,,.【答案點睛】本題考查圓的參數方程和普通方程的轉化、直線極坐標方程和直角坐標方程的轉化,消去參數方程中的參數,就可把參數方程化為普通方程,消去參數的常用方法有:①代入消元法;②加減消元法;③乘除消元法;④三角恒等式消元法,極坐標方程化為直角坐標方程,只要將和換成和即可.19.(1)(2).【答案解析】
(1)根據,由向量,的坐標直接計算即得;(2)先求出,再根據向量平行的坐標關系解得.【題目詳解】(1)由題,向量,,則.(2),.,,整理得,化簡得,即,,,,即.【答案點睛】本題考查平面向量的坐標運算,以及向量平行,是常考題型.20.(Ⅰ)0.288(Ⅱ)(ⅰ)見解析(ⅱ)數學期望的最大值為280【答案解析】
(Ⅰ)根據題意,設購買該商品的3位顧客中,選擇分2期付款的人數為,由獨立重復事件的特點得出,利用二項分布的概率公式,即可求出結果;(Ⅱ)(ⅰ)依題意,的取值為200,250,300,350,400,根據離散型分布求出概率和的分布列;(ⅱ)由題意知,,解得,根據的分布列,得出的數學期望,結合,即可算出的最大值.【題目詳解】解:(Ⅰ)設購買該商品的3位顧客中,選擇分2期付款的人數為,則,則,故購買該商品的3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業互聯網平臺網絡安全態勢感知技術安全態勢感知與安全防護技術創新報告2025
- 2025年六盤水市重點中學八年級英語第二學期期中復習檢測模擬試題含答案
- 制造業數字化轉型數據治理策略與能源管理的優化報告
- 2025年元宇宙社交平臺隱私保護與用戶體驗研究報告
- 社交媒體輿情監測與2025年危機公關技術應用研究指南與實踐案例分析指南報告001
- 2025年單身經濟下小型家電市場消費者購買偏好研究報告
- 2025年醫藥行業市場準入政策與監管趨勢報告
- 2025年醫藥企業研發外包(CRO)與臨床試驗結果轉化報告
- 2025年短視頻平臺內容監管與網絡素養提升策略報告
- 2025年醫藥流通行業供應鏈優化與成本控制中的供應鏈協同效應提升策略報告
- 術后病人燙傷不良事件PDCA循環分析課件
- 配電設備運行、維護、巡回檢查制度范本
- 2024年上海外服招聘筆試參考題庫附帶答案詳解
- 工業安全教學課件
- 骨科手術后的康復輔助器具和輔助裝置
- 新員工企業文化培訓
- 學校課程體系建設與調整情況匯報
- 2024年江西吉安市城投公司招聘筆試參考題庫含答案解析
- 鐵路路基施工與維護習題集
- 農產品安全生產技術
- 電器整機新產品設計DFM檢查表范例
評論
0/150
提交評論