【高考沖刺】最新河南省開封市高考數學一模試卷(文科)及解析_第1頁
【高考沖刺】最新河南省開封市高考數學一模試卷(文科)及解析_第2頁
免費預覽已結束,剩余25頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、河南省開圭寸市高考數學一模試卷(文科)一、選擇題:本大題共 12 小題,每小題 5 分,共 60 分.在每小題給出的四個 選項中,只有一項是符合題目要求的.1. (5 分)設集合 A=1, 3, 5, 7 , B=x|2x0,b0)a bToB- i為等軸雙曲線,且焦點到漸近線x2- y2=210. (5 分)函數 y=xln|x|的圖象大致是()萬世不竭”其意思為:一尺的木棍,每天截取一半,永遠都截不完現將該木棍依此規律截取,如圖所示的程序框圖的功能就是計算截取 7 天后所剩木棍的長度(單位:尺),則處可分別填入的是()C.17,9. (5分)1 1-.i M D. I;. - , i 1-

2、12 2如圖,在一個正方體內放入兩個半徑不相等的球Oi、02,這外切,且球 0i與正方體共頂點A 的三個面相切,球 02與正方體共頂點 Bi的三個面相切,則兩球在正方體的面AAiCiC 上的正投影是()B.二叮-: 11. (5 分)拋物線M: y2=4x 的準線與 x 軸交于點 A,點 F 為焦點,若拋物線M上一點 P 滿足 PA 丄 PF,則以 F 為圓心且過點 P 的圓被 y 軸所截得的弦長約為(參 考數據:匸2.24)()A.仁1B.C.D.R12.(5 分)已知函數1.:, 若函數 F(x) =f (x)63-3 的所有零點依次記為xi,X2, x3,,Xn,且 xiV沁Vx3 VV

3、冷,則Xl+2X2+2x3+2xnT+xn=()A.B.445nC. 455nD.-33、填空題:本大題共 4 小題,每小題 5 分,共 20 分.14. (5 分)已知函數 f (x) =ax3+bx+1 的圖象在點(1, f (1)處的切線方程為4x- y- 1=0,貝 U a+b=_.f5x+3y1515. (5 分)設 x, y 滿足約束條件* rCx+l ,且 x, y Z,則 z=3x+5y 的最大x-5y3值為_ .16. (5 分)一個棱長為 5 的正四面體(棱長都相等的三棱錐)紙盒內放一個小正四面體,若小正四面體在紙盒內可以任意轉動, 則小正四面體的棱長的最大值 為2/3 x

4、 b 0),稱圓心在原點 O,半徑為 -的圓是橢圓 C 的準圓”已知橢圓 C 的離心率一二,其準圓”的方程為 x2+y2=4.3(I) 求橢圓 C 的方程;(II)點 P 是橢圓 C 的準圓”上的動點,過點 P 作橢圓的切線 h , 12交準圓”于點M,N.(1) 當點 P 為準圓”與 y 軸正半軸的交點時,求直線 h, 12的方程,并證明 li丄12;(2) 求證:線段 MN 的長為定值.21.(12 分)已知函數 f (x) = (t - 1) xe?,g (x) =tx+1 - ex.(I)當 t豐1 時,討論 f (x)的單調性;(n)f (x) g (x)在0,+x)上恒成立,求 t

5、 的取值范圍.選修 4-4 :極坐標與參數方程22.(10 分)已知直線 l: 3x- =y-6=0,在以坐標原點 O 為極點,x 軸正半軸為極軸的極坐標系中,曲線 C:p-4sin0=0(I)將直線 l 寫成參數方程 P=2+tC0SQ(t 為參數,a0, n),)的形式,(y=tsind并求曲線 C 的直角坐標方程;(n)過曲線 C 上任意一點 P 作傾斜角為 30勺直線,交 l 于點 A,求| AP|的最值.選修 4-5:不等式選講23.已知關于 x 的不等式| x+11+| 2x- 1| 3 的解集為x|mwx n.(I) 求實數 m、n 的值;(II)設 a、b、c 均為正數,且 a

6、+b+c=n-m,求丄+ +丄的最小值.a b c2018 年河南省開封市高考數學一模試卷(文科)參考答案與試題解析一、選擇題:本大題共 12 小題,每小題 5 分,共 60 分.在每小題給出的四個 選項中,只有一項是符合題目要求的.1. (5 分)設集合 A=1, 3, 5, 7 , B=x|2x 5,貝UAHB 的真子集個數為 ( )A. 2 個 B. 3 個 C. 4 個 D. 8 個【解答】解:集合 A=1, 3, 5, 7,B=x|2x450, x8,二 x=9,.乙的平均成績超過甲的平均成績的概率為 p=故選:A.227.(5 分)已知曲線 耳-耳=1 (a0, b0)為等軸雙曲線

7、,且焦點到漸近線/ b2的距離為,則該雙曲線的方程為()A.廠B. X2 y2=1 C -D. X2 y2=22 2【解答】解:根據題意,若曲線=1(a0, b0)為等軸雙曲線,則 a2=b2,a2b2c=.:、=*:,即焦點的坐標為(土叮:a, 0);其漸近線方程為 x y=0,若焦點到漸近線的距離為爲則有 =a= :,V1+1則雙曲線的標準方程為斗-=1,即 x2 y2=2;故選:D.8.(5分) 我國古代名著 莊子?天下篇中有一句名言 一尺之棰,日取其半, 萬世不竭”其意思為:一尺的木棍,每天截取一半,永遠都截不完.現將該木 棍依此規律截取,如圖所示的程序框圖的功能就是計算截取 7 天后

8、所剩木棍的長 度(單位:尺),則處可分別填入的是()A.JiB. 一_ 11 1C. 1.一 . i M D. 1 . . - , i M2 2【解答】解:由題意可得:由圖可知第一次剩下 丄,第二次剩下一,由此得出2 22第 7 次剩下,可得為 i 0 得:x丄,得出函數 f (x)在(丄,+x)上是ee增函數,故選:C.11.(5 分)拋物線M: y2=4x 的準線與 x 軸交于點 A,點 F 為焦點,若拋物線M上一點P 滿足 PA 丄 PF,則以 F 為圓心且過點 P 的圓被 y 軸所截得的弦長約為(參 考數據:匚2.24)()A.丄! B.亍 C.D.【解答】解:由題意,A (- 1,0

9、),F (1, 0),點 P 在以 AF 為直徑的圓 x2+y2=1 上.C10. (5 分)函數 y=xln|x|的圖象大致是()設點 P 的橫坐標為 m,聯立圓與拋物線的方程得X2+4X-仁 0,Im0,二 m= - 2+;伍,點 P 的橫坐標為-2+ 7,| PF =m+1 = - 1+伍,圓 F 的方程為(x- 1)2+y2= ( :- 1)2,令 x=0,可得 y= !撫 | EF =25-卻宅=2*5 竝X 24=伍!,12. (5 分)已知函數:,若函數 F (x) =f (x)63-3 的所有零點依次記為xi, X2, x3,,Xn,且 xiV沁 x3VVxn,則xi+2x2+

10、2x3+- +2xn-l+xn=()A.下B.445nC. 455nD. 33【解答】解:函數.,6令 2x-=+kn得X=T+, k乙即 f(x)的對稱軸方程為 x=飛丿+丄,622323k Z.If (x)的最小正周期為 T=n,0 x,;J當 k=30 時,可得 x=, f (x)在0, 二 L上有 30 條對稱軸,3根據正弦函數的性質可知:函數:與 y=3 的交點 xi, X2關于一63對稱,X2, X3關于對稱,6即 Xi+X2=X2,X2+X3X2,,XnT+Xn=2X()6623將以上各式相加得:xi+2X2+2x3+2x28+X29=2( *+-+)=(2+5+8+-+89)6

11、 6 6X 二=455n3貝 UXi+2X2+2X3+ +2Xn-1+Xn= ( X1+X2) +( X2+X3)+X3+ +Xn-l+ (Xn-l+Xn)=2(今誓+“+警=455n,故選:C二、填空題:本大題共 4 小題,每小題 5 分,共 20 分.2尹=s2.【解答】解:由題意,自變量為 2,故內層函數 f (2) =log (22- 1) =12,故有 f (1) =2Xe1-1=2,即 f(f(2)=f(1)=2Xe1-1=2,故答案為 214. (5 分)已知函數 f (x) =ax3+bx+1 的圖象在點(1, f (1)處的切線方程為4x- y-仁 0,則 a+b= 2.【解

12、答】解:函數 f (x) =ax3+bx+1 的導數為 f(x) =3ax+b,f (x)的圖象在點(1, f (1)處的切線方程為 4x- y-仁 0,可得 3a+b=4, f (1) =3=a+b+1,解得 a=1, b=1,則 a+b=2.故答案為:2.f5x+3y1515.(5 分)設 x, y 滿足約束條件応北+1,且 x, y Z,則 z=3x+5y 的最大Lx-5y3值為 13.r5x+3y 4:I18. (12 分)如圖 1,在矩形 ABCD 中,AD=2AB=4 E 是 AD 的中點.將 ABE 沿BE 折起使 A 到點 P 的位置,平面 PEB 丄平面 BCDE 如圖 2.

13、(I)求證:PB 丄平面 PEC(n)求三棱錐 D-PEC 的高.D團丄【解答】解:(I)證明 AD=2AB E 為線段 AD 的中點, AB=AE取 BE 中點 0,連接 P0,則 P0 丄 BE,又平面 PEBL 平面 BCDE 平面 PEBA 平面 BCDE=B E P0 丄平面 BCDE 貝 U P0 丄 EC,在矩形 ABCD 中 ,二 AD=2AB E 為 AD 的中點, BE! EC,貝 U EC平面 PBE EC! PB,又 PB 丄 PE,且 PEAEC=E PB 丄平面 PEC(U)以 0B 所在直線為 x 軸,以平行于 EC 所在直線為 y 軸,以 0P 所在直線為 z

14、軸建立空間直角坐標系, PB=PE=2 則 B (匚,0 , 0), E (-匚,0 , 0), P (0 , 0,匚),D (- 2 匚,-,0), C (- - , 2 - , 0),二 T =(-匚,0,-匚),-:-(-二,2 匚,-二), VP-ECD=VD-EPC,設三棱錐 D- PEC 的高為 h,則可得:15ECD?0P=&EPC?h ,可V0&EP(- | 1|?|:| ?sin/ EPC得:J2-h,解得:三棱錐 D- PEC 的高h=1.19. (12 分)近年來我國電子商務行業迎來蓬勃發展的新機遇,2017 年雙 11 期間,某購物平臺的銷售業績高達 1271 億人民幣

15、與此同時,相關管理部門推出 了針對電商的商品和服務的評價體系, 現從評價系統中選出 200 次成功交易,并 對其評價進行統計,對商品的好評率為 0.6,對服務的好評率為 0.75,其中對商 品和服務都做出好評的交易為 80 次.(I)完成下面的 2X2 列聯表,并回答是否有 99%的把握,認為商品好評與服務好評有關?對服務好評對服務不滿意合計對商品好評對商品不滿意合計200(n)若針對商品的好評率,采用分層抽樣的方式從這 200 次交易中取出 5 次交 易,并從中選擇兩次交易進行客戶回訪,求至少有一次好評的概率.汽.m:,其中n=a+b+c+d)【解答】解:(I)根據題意,對商品好評次數為 2

16、00X0.6=120,對服務好評次數為 200X0.75=150,填寫 2X2 列聯表如下;對服務好評對服務不滿意合計對商品好評8040120對商品不滿意701080合計15050200計算11.116.635,有 99%的把握認為商品好評與服務好評有關;(n)根據分層抽樣原理,從這 200 次交易中取出 5 次交易,抽取商品好評次數為 120=3,不滿意次數為 2,P (Q k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828n(adHoc)2附:200分別記為 a、b、c、D、E,從中選擇兩次交易,基

17、本事件為ab、ac、aD、aE、be、bD、bE、cD、cE、DE 共 10 種,至少有一次好評的事件為ab、ac、aD、aE、be、bD、bE、cD、cE 共 9 種,故所求的概率為 P=20.(12 分)給定橢圓 C:+.=1( a b 0),稱圓心在原點 O,半徑為 的圓是橢圓 C的 準圓”已知橢圓 C 的離心率 ,其準圓”的方程為 x2+y2=4.(I) 求橢圓 C 的方程;(II)點 P 是橢圓 C 的準圓”上的動點,過點 P 作橢圓的切線 h , 12交準圓”于點M, N.(1) 當點 P 為準圓”與 y 軸正半軸的交點時,求直線 h, 12的方程,并證明 11丄12;(2) 求證

18、:線段 MN 的長為定值.【解答】解:(I)由準圓方程為/+y2=4 ,貝Ua2+b2=4 ,橢圓的離心率解得:a= :, b=1,2厲橢圓的標準方程(U)證明:(1)V準圓X2+/=4與 y 軸正半軸的交點為 P(0,2),設過點 P (0, 2)且與橢圓相切的直線為 y=kx+2,fy=kx+2聯立 *F 2,整理得(1+3”)x2+12kx+9=0.直線 y=kx+2 與橢圓相切,二 =144k2- 4X9 (1 +3k2) =0,解得 k= 1, I1, I2方程為 y=x+2, y=-X+2.I 1=1, =- 1, .?=- 1,則 h 丄 l2 丄12(2)當直線 li, I2中

19、有一條斜率不存在時,不妨設直線 li斜率不存在, 貝Uli: x= 二,當 li: x=二時,li與準圓交于點(匚,1) (T,- 1), 此時 l2為 y=1 (或 y=- 1),顯然直線 l1,l2垂直; 同理可證當h:x=二時,直線 h,12垂直.當 l1, l2斜率存在時,設點 P (xo, y),其中 x2+yo2=4.設經過點 P (xo, yo)與橢圓相切的直線為 y=t (x- xo) +yo,ry=t(x-x0)+y0(1+3t2) x2+6t (yo- txo) x+3 (yo- txo)2- 3=0.由厶=O 化簡整理得(3 x。2) t2+2xyot+1 - y2=O,

20、Txo2+yo2=4.,二有(3 - xo2) t2+2xoyot+ (xo2-3) =o.設 l1, l2的斜率分別為 t1, t2,“,l2與橢圓相切,二 t1, t2滿足上述方程(3- X。2) t2+2xoyot + (xo2- 3) =o,二 t1?t2=- 1 ,即 l1, l2垂直.綜合知: l1, l2經過點 P (xo, yo),又分別交其準圓于點M, N,且 l1, l2垂直.線段 MN 為準圓 x2+y2=4 的直徑,| MN| =4,線段 MN 的長為定值.21.(12 分)已知函數 f (x) = (t - 1)xex, g(x) =tx+1 - ex.(1)當 t豐

21、 1時,討論 f(x)的單調性;(n)f (x) 1,則 xv-1 時,f (x)v0, f (x)遞減,x- 1 時,f (x) 0, f (x) 遞增,若 tv1,貝Uxv- 1 時,f (x) 0, f (x)遞增,x- 1 時,f (x)v0, f (x) 遞減,故 t1 時,f(x)在(-x,-1)遞減,在(-1,+x)遞增,tv1 時,f(乂)在(-x,-1)遞增,在(-1,+X)遞減;(2)f (x) g (x)在0, +x)上恒成立,即(t - 1) xeT- tx - 1+ex0, h (x)在0, +x)遞增, h (x) h (0) =0,故 h (x)在0, +x)遞增,故 h (x) h (0) =0,顯然不成立, t 工 1,則 h (x) =ex(x+) (t- 1),t-1令 h (x) =0,則 x=-:,1當-:W0 即 t v -或 t 1 時,t-12若 t-,則 h (x)在0, +x)為負,h (x)遞減,故有 h (x) h (0) =0, h (x)在0, +x)遞減, h (x) 1,則 h (x)在0, +x)上為正,h (x)遞增,故有 h (x) h (0) =0,故 h (x)在0, +x)遞增,故 h (x) h (0) =0,不成立,2- 0 即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論