




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、標準偏差出自 MBA智庫百科()數學表達式: · S-標準偏差(%) · n-試樣總數或測量次數,一般n值不應少于20-30個 · i-物料中某成分的各次測量值,1n; 標準偏差的使用方法 六個計算標準偏差的公式1標準偏差的理論計算公式設對真值為X的某量進行一組等精度測量, 其測得值為l1、l2、ln。令測得值l與該量真值X之差為真差占, 則有1 = li X 2 = l2 X n = ln X 我們定義標準偏差(也稱標準差)為 (1) 由于真值X都是不可知的, 因此真差占也就無法求得, 故式只有理論意義而無實用價值。 標準偏差的常用估計貝塞爾公式由于真值是不可知
2、的, 在實際應用中, 我們常用n次測量的算術平均值來代表真值。理論上也證明, 隨著測量次數的增多, 算術平均值最接近真值, 當時, 算術平均值就是真值。 于是我們用測得值li與算術平均值之差剩余誤差(也叫殘差)Vi來代替真差 , 即 設一組等精度測量值為l1、l2、ln 則 通過數學推導可得真差與剩余誤差V的關系為 將上式代入式(1)有 (2) 式(2)就是著名的貝塞爾公式(Bessel)。 它用于有限次測量次數時標準偏差的計算。由于當時,,可見貝塞爾公式與的定義式(1)是完全一致的。 應該指出, 在n有限時, 用貝塞爾公式所得到的是標準偏差的一個估計值。它不是總體標準偏差。因此, 我們稱式(
3、2)為標準偏差的常用估計。為了強調這一點, 我們將的估計值用“S ” 表示。于是, 將式(2)改寫為 (2') 在求S時, 為免去求算術平均值的麻煩, 經數學推導(過程從略)有 于是, 式(2')可寫為 (2") 按式(2")求S時, 只需求出各測得值的平方和和各測得值之和的平方藝 , 即可。 標準偏差的無偏估計數理統計中定義S2為樣本方差 數學上已經證明S2是總體方差2的無偏估計。即在大量重復試驗中, S2圍繞2散布, 它們之間沒有系統誤差。而式(2')在n有限時,S并不是總體標準偏差的無偏估計, 也就是說S和之間存在系統誤差。概率統計告訴我們,
4、對于服從正態分布的正態總體, 總體標準偏差的無偏估計值為 (3) 令 則 即S1和S僅相差一個系數K,K是與樣本個數測量次數有關的一個系數, K值見表。 計算K時用到 (n + 1) = n(n) (1) = 1 由表1知, 當n>30時, 。因此, 當n>30時, 式(3')和式(2')之間的差異可略而不計。在n=3050時, 最宜用貝塞爾公式求標準偏差。當n<10時, 由于K值的影響已不可忽略, 宜用式(3'), 求標準偏差。這時再用貝塞爾公式顯然是不妥的。 標準偏差的最大似然估計將的定義式(1)中的真值X用算術平均值代替且當n有限時就得到 (4)
5、 式(4)適用于n>50時的情況, 當n>50時,n和(n-1)對計算結果的影響就很小了。 2.5標準偏差的極差估計由于以上幾個標準偏差的計算公式計算量較大, 不宜現場采用, 而極差估計的方法則有運算簡便, 計算量小宜于現場采用的特點。 極差用"R"表示。所謂極差就是從正態總體中隨機抽取的n個樣本測得值中的最大值與最小值之差。 若對某量作次等精度測量測得l1、,且它們服從正態分布, 則 R = lmax lmin 概率統計告訴我們用極差來估計總體標準偏差的計算公式為 (5) S3稱為標準偏差的無偏極差估計, d2為與樣本個數n(測得值個數)有關的無偏極差系數,
6、其值見表2 由表2知, 當n15時, 因此, 標準偏差更粗略的估計值為 (5') 還可以看出, 當200n1000時,因而又有 (5") 顯然, 不需查表利用式(5')和(5")了即可對標準偏差值作出快速估計, 用以對用貝塞爾公式及其他公式的計算結果進行校核。 應指出,式(5)的準確度比用其他公式的準確度要低, 但當5n15時,式(5)不僅大大提高了計算速度, 而且還頗為準確。當n>10時, 由于舍去數據信息較多, 因此誤差較大, 為了提高準確度, 這時應將測得值分成四個或五個一組, 先求出各組的極差R1、, 再由各組極差求出極差平均值。 極差平均值和
7、總體標準偏差的關系為 需指出, 此時d2大小要用每組的數據個數n而不是用數據總數N(=nK)去查表2。再則, 分組時一定要按測得值的先后順序排列,不能打亂或顛倒。 標準偏差的平均誤差估計平均誤差的定義為 誤差理論給出 (A) 可以證明與的關系為 (證明從略) 于是(B) 由式(A)和式(B)得 從而有 式(6)就是佩特斯(C.A.F.Peters.1856)公式。用該公式估計值, 由于right|Vright|不需平方,故計算較為簡便。但該式的準確度不如貝塞爾公式。該式使用條件與貝塞爾公式相似。標準偏差的應用實例1對標稱值Ra = 0.160 < math > m < mat
8、h > 的一塊粗糙度樣塊進行檢定, 順次測得以下15個數據:1.45,1.65,1.60,1.67,1.52,1.46,1.72,1.69,1.77,1.64,4.56,1.50,1.64,1.74和1.63m, 試求該樣塊Rn的平均值和標準偏差并判斷其合格否。 解:1)先求平均值 2)再求標準偏差S 若用無偏極差估計公式式(5)計算, 首先將測得的, 15個數據按原順序分為三組, 每組五個, 見表3。 表3 組號l_1l_5R 11.481.651.601.671.520.19 21.461.721.691.771.640.31 31.561.501.641.741.630.24 因每
9、組為5個數據, 按n=5由表2查得 故 若按常用估計即貝塞爾公式式(2') , 則 若按無偏估計公式即式(3')計算, 因n=15,由表1查得K = 1.018, 則 若按最大似然估計公式即式(4')計算, 則 = 0.09296( < math > m < math > ) 若按平均誤差估計公式即式(6), 則 現在用式(5')對以上計算進行校核 可見以上算得的S、S1、S2、S3和S4沒有粗大誤差。 由以上計算結果可知0.09296<0.0962<0.0979<0.1017<0.1062 即S2 < S
10、< S1 < S4 < S3 可見, 最大似然估計值最小, 常用估計值S稍大, 無偏估計值S1又大, 平均誤差估計值S4再大, 極差估計值S3最大。縱觀這幾個值, 它們相當接近, 最大差值僅為0.01324m。從理論上講, 用無偏估計值和常用估計比較合適, 在本例中, 它們僅相差0.0017m??梢韵嘈? 隨著的增大, S、S1、S2、S3和S4之間的差別會越來越小。 就本例而言, 無偏極差估計值S3和無偏估計值S1僅相差0.0083m, 這說明無偏極差估計是既可以保證一定準確度計算又簡便的一種好方法。 JJG102-89表面粗糙度比較樣塊規定Ra的平均值對其標稱值的偏離不應
11、超過+12%17%, 標準偏差應在標稱值的4%12%之間。已得本樣塊二產,產均在規定范圍之內, 故該樣塊合格。 標準偏差與標準差的區別標準差(Standard Deviation)各數據偏離平均數的距離(離均差)的平均數,它是離差平方和平均后的方根。用表示。因此,標準差也是一種平均數。標準差是方差的算術平方根。標準差能反映一個數據集的離散程度。平均數相同的,標準差未必相同。 例如,A、B兩組各有6位學生參加同一次語文測驗,A組的分數為95、85、75、65、55、45,B組的分數為73、72、71、69、68、67。這兩組的平均數都是70,但A組的標準差為17.08分,B組的標準差為2.16分
12、,說明A組學生之間的差距要比B組學生之間的差距大得多。 標準偏差(Std Dev,Standard Deviation) - 統計學名詞。一種量度數據分布的分散程度之標準,用以衡量數據值偏離算術平均值的程度。標準偏差越小,這些值偏離平均值就越少,反之亦然。標準偏差的大小可通過標準偏差與平均值的倍率關系來衡量。 有人經?;煊镁礁`差(RMSE)與標準差(Standard Deviation),實際上二者并不是一回事。1.均方根誤差均方根誤差為了說明樣本的離散程度。均方根誤差(root-mean-square error )亦稱標準誤差,其定義為 ,i1,2,3,n。在有限測量次數中,均方根誤差
13、常用下式表示:,式中,n為測量次數;di為一組測量值與平均值的偏差。如果誤差統計分布是正態分布,那么隨機誤差落在土以內的概率為68。2.標準差標準差是方差的算術平方根。標準差能反映一個數據集的離散程度。平均數相同的,標準差未必相同。標準差也被稱為標準偏差,或者實驗標準差。均方根值也稱作為效值,它的計算方法是先平方、再平均、然后開方。比如幅度為100V而占空比為0.5的方波信號,如果按平均值計算,它的電壓只有50V,而按均方根值計算則有70.71V。這是為什么呢?舉一個例子,有一組100伏的電池組,每次供電10分鐘之后停10分鐘,也就是說占空比為一半。如果這組電池帶動的是10電阻,供電的10分鐘
14、產生10A的電流和1000W的功率,停電時電流和功率為零。那么在20分鐘的一個周期內其平均功率為500W,這相當于70.71V的直流電向10電阻供電所產生的功率。而50V直流電壓向10電阻供電只能產生的250W的功率。對于電機與變壓器而言,只要均方根電流不超過額定電流,即使在一定時間內過載,也不會燒壞。 PMTS1.0抽油機電能圖測試儀對電流、電壓與功率的測試計算都是按有效值進行的,不會因為電流電壓波形畸變而測不準。這一點對于測試變頻器拖動的電機特別有用。均方根誤差為了說明樣本的離散程度。對于N1,.Nm,設N=(N1+.+Nm)/m;則均方根誤差記作: 6F!M n+t8Q5i.Y-mt=s
15、qrt(N2-N12)+.+(N2-Nm2)/(m(m-1);比如兩組樣本:第一組有以下三個樣本:3,4,5第二組有一下三個樣本:2,4,6這兩組的平均值都是4,但是第一組的三個數值相對更靠近平均值,也就是離散程度小,均方差就是表示這個的。同樣,方差、標準差(方差開根,因為單位不統一)都是表示數據的離散程度的。幾種典型平均值的求法 (1)算術平均值這種平均值最常用。設x1、x2、 、x n為各次的測量值,n代表測量次數,則算術平均值為 (2)均方根平均值
16、; (3)幾何平均值 (4)對數平均值 (5)加權平均值相對標準方差的計算公式準確度:測定值與真實值符合的程度絕對誤差:測量值(或多次測定的平均值)與真(實)值之差稱為絕對誤差,用表示。相對誤差:絕對誤差與真值的比值稱為相對誤差。常用百分數表示。絕對誤差可正可負,可以表明測量儀器的準確度,但不能反映誤差在測量值中所占比例,相對誤差反映測量誤差在測量結果中所占的比例,衡量相對誤差更有意義。例:用刻度0.5cm的尺測量長度,可以讀準到0.1cm,該尺測量的絕對誤差為0.1cm;用刻度1mm的尺測量長度,
17、可以讀準到0.1mm,該尺測量的絕對誤差為0.1mm。例:分析天平稱量誤差為0.1mg, 減重法需稱2次,可能的最大誤差為0.2mg, 為使稱量相對誤差小于0.1%,至少應稱量多少樣品? 答:稱量樣品量應不小于0.2g。真值():真值是客觀存在的,但任何測量都存在誤差,故真值只能逼近而不可測知,實際工作中,往往用“標準值”代替“真值”。標準值:采用多種可靠的分析方法、由具有豐富經驗的分析人員經過反復多次測定得出的結果平均值。精密度:幾次平行測定結果相互接近的程度。各次測定結果越接近,精密度越高,用偏差衡量精密度。偏差:單次測量值與樣本平均值之差: 平均偏差:各次測量偏差絕對值的平均值。相對平均偏差:平均偏差與平均值的比值。標準偏差:各次測量偏差的平方和平均值再開方,比平均偏差更靈敏的反映較大偏差的存在,在統計學上更有意義。相對標準偏
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超神數學-高考數學總復習拔高篇(二輪)專題2周期函數與類周期函數(含答案或解析)
- 房地產行業報告:百強房企拿地優于去年市場延續分化
- 部編版語文五年級下冊《習作-神奇的探險之旅》課件
- PEEK行業深度:“機器人浪潮”下的特種塑料“弄潮兒”
- 2025年農業灌溉用水高效利用的節水灌溉設備市場分析報告
- 新零售時代下的連鎖藥店擴張路徑與數字化運營模式研究報告
- 汽車行業供應鏈全球化背景下的韌性構建與風險管理報告
- 大數據與社交媒體融合的2025年精準營銷策略研究報告
- 金融行業2025年反欺詐技術革新與大數據融合應用報告
- 2025年多式聯運信息平臺物流企業國際化發展與拓展報告
- 2025年連云港市中考數學試題卷(含答案)
- 2024初級會計職稱考試《經濟法基礎》真題和答案
- CJ/T 358-2019非開挖工程用聚乙烯管
- 理論聯系實際闡述文化在社會發展中具有什么樣的作用?參考答案四
- 四川雅安天立學校2025年七下數學期末預測試題含解析
- 電子元器件品質協議書
- 破產拍賣協議書
- 駕校退款協議書
- 2025年中國石油套管油管市場現狀分析及前景預測報告
- 《課件的責任與擔當》
評論
0/150
提交評論