2020版高考理數學一輪練習64不等式選講_第1頁
2020版高考理數學一輪練習64不等式選講_第2頁
免費預覽已結束,剩余3頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、課時規范練 64 不等式選講 基礎鞏固組 1. (2018 河南最后一次模擬 ,23) 已知函數 f ( x) =| 2x+4|+| 2x-a|. (1) 當a=6時,求f (x) 12的解集; 2 (2) 已知a-2, g(x)=x+2ax+,若對于x -1,都有f(x) g(x)成立,求a的取值范圍 2.(2018湖南長沙模擬二,23)已知函數f (x) =|x- 11 ,關于x的不等式f (x) f (a) -f ( b). 3. (2018 安徽淮南二模 ,23) 已知函數 f(x)=|x- 2|-|x+ 1|. (1) 解不等式 f(x)+x0. 若關于x的不等式f(x) W a2-

2、2a的解集為R求實數a的取值范圍 4.(2018 河北衡水中學三輪檢測 ,23) 已知函數 f(x)=|ax- 1|- (a-2)x. (1)當a=3時,求不等式f (x)0的解集; (2)若函數f(x)的圖像與x軸沒有交點,求實數a的取值范圍 綜合提升組 5.已知函數 f ( x) =|x-a|. (1)當 a=-2 時,解不等式 f(x) 16-| 2x-1|; 若關于x的不等式f(x) W1的解集為0,2,求證:f(x) +f(x+2) 2 . 6.(2018 河南南陽模擬 ,23) 已知函數 f(x)=|x- 2a+1|+|x+ 2| , g(x) =3x+1. (1)當a=1時,求不

3、等式f (x) w g(x)的解集; x -2, a), f(x) g(x),求a的取值范圍. 7.已知函數 f(x)=|2x+1| ,g(x)=|x+1| ,不等式 f (x) w g(x)+1 的解集為 A. (1) 求 A; 證明:對于任意的a, b ?RA都有g( ab) g( a) -g (-b)成立. 創新應用組 8.已知函數 f(x)=|x- 2|-|x|+m (m R). (1) 若 m=0, 解不等式 f(x)x-1; (2) 若方程f (x) =-x有三個不同的解,求實數m的取值范圍 9.(2018安徽安慶熱身考,23)若關于x的不等式|3x+2|+| 3x-1|-t 0的

4、解集為R記實數t的最大 值為 a. (1) 求 a 的值 ; 若正實數n, n滿足4m+jn=a,求=的最小值. 參考答案 課時規范練 64 不等式選講 1. 解(1)當 a=6 時,f(x)=| 2x+4|+| 2x-6| , f( x) 12 等價于 |x+ 2|+|x- 3| 6, 因為 |x+ 2|+|x- 3|= 所以或或 解得X或xW -, 所以解集為 . (2)當 a-2 時,且 x -1,時,f(x)=2x+4-(2x-a)=4+a, 所以 f(x) g( x), 即 4+a g( x). 又g(x) =x2+2ax+的最大值必為 g( -1), g之一, 所以即 解得 - W

5、 aW, 所以a的取值范圍為-,. 2. 解(1)由 f(x)3-| 2x+1| , 得 |x- 1|+| 2x+1|3, 即或或 解得-1vxW -或-x1, 所以,集合 A=x R|- 1x1. 證明 Ta, b A,二-1ab0, f(ab)f(a) -f (b). 3. 解 (1) 不等式 f( x) +x0 可化為 |x- 2|+x|x+ 1|. 當 x- ( x+1), 解得 x- 3,即- 3x- 1; 當-1x+1,解得 xvl,即-1 x2 時, x-2+xx+1, 解得 x3, 即 x3. 綜上所述 : 不等式 f(x)+x0 的解集為 x|- 3x3. (2)由不等式f

6、(x) w a2-2a可得 2 |x- 2|-|x+ 1| w a2-2a, T |x- 2|-|x+ 11 w |x- 2-x- 11= 3, a-2a3,即 a - 2a- 30 . 解得a3或aw -1. 故實數a的取值范圍是a3或aw-1. 4. 解 (1) 當 a=3 時,不等式可化為 | 3x-1|-x 0, 即| 3x-1|x. / 3x- 1x, 即xv或x. 即不等式 f(x)0 的解集是 x. (2) 當 a0 時, f(x)= 要使函數 f (x) 與 x 軸無交點 , 只需即 1 w av2. 當a=0時,f (x) =2x+1,函數f (x)與x軸有交點. 當a0時,

7、f (x)=要使函數f (x)與x軸無交點, 只需此時 a 無解 . 綜上可知,當1 w a 16, 當xw-2時,原不等式可化為-X-2-2X+1A16,解得xw-, 當-2vxw時,原不等式可化為x+2-2x+1 16,解得x w -13,不滿足,舍去; 當x時,原不等式可化為 x+2+2x-1 16,解得x 5. 綜上不等式的解集為 x或x5 . 證明 f (x) wi 即|x-a| w 1,解得 a-1w xw a+1,而 f (x) wi 的解集是0,2, 所以 解得 a=1, 從而 f(x)=|x- 1|. 于是證明 f(x)+f(x+2)2, 即證 |x- 1|+|x+ 1| 2

8、, 因為 |x- 1|+|x+ 1|=| 1-x|+|x+ 1| | 1-x+x+ 1 |= 2, 所以|x- 1|+|x+ 1| 2,所以原不等式得證. 6. 解(1)當 a=1 時,f (x) =|x- 1|+|x+ 2|, 當 xw-2 時,f(x) =- 2x-1, 由-2x-1w3x+1,知此時無解; 當-2vx1 時,f (x) =3, 由 3w3x+1,解得w x1 時,f(x)=2x+1, 由 2x+1 1, 綜上所述 , 不等式的解集為 x. (2)當 x - 2, a)時,f (x)=|x- 2a+1|+x+23x+1, 即 |x- 2a+1| 2x-1. 當-2a時,2x

9、-12x-1 恒成立; 當 a, x -2,時,2 x-12x- 1 恒成立; 22 x , a時,|x- 2a+l| (2 x-i)恒成立, 即 3x2+2(2a-3)x-4a(a-1) 0 恒成立, 令 g(x) =3x2+2(2 a-3) x-4a( a-1), g( x)的最大值只可能是 g 或 g( a), g 0, g( a) =3a2- 2a 0,得 0 a,所以 a . 綜上所述 , a 的取值范圍是 a. 7. (1)解 不等式 f (x) 0. 當x0,解得x-1, A x無解; 當-1 x0,解得 x -1, A - 1 x-時,不等式可化為 x+1- (2 x+1) +

10、1 0,解得x 1, A -x 1. A 不等式 f (x) g(x) +1 的解集 A=x|- 1 x 1. (2)證明/g(a)-g(-b)=|a+1|-|-b+ 11 g( a) -g(-b)成立, 只需證 |ab+1|a+b| , 即證 |ab+1| 2|a+b|2, 也就是證明 a2b2+2ab+1 a2+2ab+b2成立,即證 a2b2-a 2-b2+10, 即證(a2-1)( b2-1) 0. A=x|- 1 x 1, |b| 1,a21, b21, A (a2-1)( b2-1) 0 成立.從而對于任意的 a, be ?RA,都有 g(ab) g( a) -g( -b)成立. 8. 解 (1) 因為 m=0, 所以 f(x)=|x- 2|-|x| , 有或 或 解得,xe ?或 0 xi 或 xx-1的解集為(-8,1. (2) 因為 f(x)=|x- 2|-|x|+m , 所以方程 f(x)=-x 有三個不同的解等價于函數 g(x)=|x- 2|-|x| 的圖像與直線 y=-x-m 有三個不 同的交點 ,作圖可知 , 當直線 y=-x-m 經過點 A(0,2) 時, m=-2; 當直線 y=-x-m 經過點 B(2, -2) 時 ,m=0. 所以實數m的取

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論