




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
重慶市江津第二中學2025屆九上數(shù)學期末學業(yè)質量監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.如圖,在平面直角坐標系中,梯形OACB的頂點O是坐標原點,OA邊在y軸正半軸上,OB邊在x軸正半軸上,且OA∥BC,雙曲線y=(x>0)經(jīng)過AC邊的中點,若S梯形OACB=4,則雙曲線y=的k值為()A.5 B.4 C.3 D.22.下列圖象能表示y是x的函數(shù)的是()A. B.C. D.3.下列事件中,屬于必然事件的是()A.明天太陽從北邊升起 B.實心鉛球投入水中會下沉C.籃球隊員在罰球線投籃一次,投中 D.拋出一枚硬幣,落地后正面向上4.對于二次函數(shù)y=-(x+1)2+3,下列結論:①其圖象開口向下;②其圖象的對稱軸為直線x=1;③其圖象的頂點坐標為(-1,3);④當x>1時,y隨x的增大而減小.其中正確結論的個數(shù)為()A.1 B.2 C.3 D.45.在一個萬人的小鎮(zhèn),隨機調查了人,其中人看某電視臺的早間新聞,在該鎮(zhèn)隨便問一個人,他看該電視臺早間新聞的概率大約是()A. B. C. D.6.拋物線的頂點坐標是()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(1,2)7.圓心角為140°的扇形的半徑為3cm,則這個扇形的面積是()cm1.A.π B.3π C.9π D.6π8.下列說法錯誤的是()A.必然事件的概率為1 B.心想事成,萬事如意是不可能事件C.平分弦(非直徑)的直徑垂直弦 D.的平方根是9.﹣的絕對值為()A.﹣2 B.﹣ C. D.110.已知兩圓的半徑分別是2和4,圓心距是3,那么這兩圓的位置是()A.內(nèi)含 B.內(nèi)切 C.相交 D.外切二、填空題(每小題3分,共24分)11.若式子在實數(shù)范圍內(nèi)有意義,則的取值范圍是________.12.若,,是反比例函數(shù)圖象上的點,且,則、、的大小關系是__________.13.如圖,已知AB,CD是☉O的直徑,弧AE=弧AC,∠AOE=32°,那么∠COE的度數(shù)為________度.14.一個周長確定的扇形,要使它的面積最大,扇形的圓心角應為______度.15.如圖,四邊形是菱形,,對角線,相交于點,于,連接,則=_________度.16.我國古代數(shù)學著作《增刪算法統(tǒng)宗》記載“圓中方形”問題:“今有圓田一段,中間有個方池,丈量田地待耕犁,恰好三分在記,池面至周有數(shù),每邊三步無疑,內(nèi)方圓徑若能知,堪作算中第一.”其大意為:有一塊圓形的田,中間有一塊正方形水池,測量出除水池外圓內(nèi)可耕地的面積恰好72平方步,從水池邊到圓周,每邊相距3步遠.如果你能求出正方形的邊長是x步,則列出的方程是_______________.17.分解因式:=____________.18.已知三點A(0,0),B(5,12),C(14,0),則△ABC內(nèi)心的坐標為____.三、解答題(共66分)19.(10分)九年級甲班和乙班各推選10名同學進行投籃比賽,按照比賽規(guī)則,每人各投了10個球;將兩班選手的進球數(shù)繪制成如下尚不完整的統(tǒng)計圖表:進球數(shù)/個1098743乙班人數(shù)/個112411平均成績中位數(shù)眾數(shù)甲班77c乙班ab7(1)表格中b=,c=并求a的值;(2)如果要從這兩個班中選出一個成績較為穩(wěn)定的班代表年級參加學校的投籃比賽,爭取奪得總進球數(shù)團體第一名,你認為應該選擇哪個班,請說明理由;如果要爭取個人進球數(shù)進入學校前三名,你認為應該選擇哪個班,請說明理由.20.(6分)一個二次函數(shù)的圖象經(jīng)過(3,1),(0,-2),(-2,6)三點.求這個二次函數(shù)的解析式并寫出圖象的頂點.21.(6分)如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,BE⊥AB,垂足為B,BE=CD連接CE,DE.(1)求證:四邊形CDBE是矩形(2)若AC=2,∠ABC=30°,求DE的長22.(8分)如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(﹣1,0)、C(0,﹣3)兩點,與x軸交于另一點B.(1)求這條拋物線所對應的函數(shù)關系式;(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標;(3)設點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標.23.(8分)如圖,在中,,,,點從點出發(fā)沿以的速度向點移動,移動過程中始終保持,(點分別在線段、線段上).(1)點移動幾秒后,的面積等于面積的四分之一;(2)當四邊形面積時,求點移動了多少秒?24.(8分)某區(qū)各街道居民積極響應“創(chuàng)文明社區(qū)”活動,據(jù)了解,某街道居民人口共有7.5萬人,街道劃分為A,B兩個社區(qū),B社區(qū)居民人口數(shù)量不超過A社區(qū)居民人口數(shù)量的2倍.(1)求A社區(qū)居民人口至少有多少萬人?(2)街道工作人員調查A,B兩個社區(qū)居民對“社會主義核心價值觀”知曉情況發(fā)現(xiàn):A社區(qū)有1.2萬人知曉,B社區(qū)有1萬人知曉,為了提高知曉率,街道工作人員用了兩個月的時間加強宣傳,A社區(qū)的知曉人數(shù)平均月增長率為m%,B社區(qū)的知曉人數(shù)第一個月增長了m%,第二個月增長了2m%,兩個月后,街道居民的知曉率達到76%,求m的值.25.(10分)黃山景區(qū)銷售一種旅游紀念品,已知每件進價為元,當銷售單價定為元時,每天可以銷售件.市場調查反映:銷售單價每提高元,日銷量將會減少件.物價部門規(guī)定:銷售單價不低于元,但不能超過元,設該紀念品的銷售單價為(元),日銷量為(件).(1)直接寫出與的函數(shù)關系式.(2)求日銷售利潤(元)與銷售單價(元)的函數(shù)關系式.并求當為何值時,日銷售利潤最大,最大利潤是多少?26.(10分)如圖,在平面直角坐標系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于A、B兩點,與x軸交于C點,點A的坐標為(n,6),點C的坐標為(﹣1,0),且tan∠ACO=1.(1)求該反比例函數(shù)和一次函數(shù)的解析式;(1)求點B的坐標.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】過的中點作軸交軸于,交于,作軸于,如圖,先根據(jù)“”證明,則,得到,再利用得到,然后根據(jù)反比例函數(shù)系數(shù)的幾何意義得,再去絕對值即可得到滿足條件的的值.【詳解】過的中點作軸交軸于,交于,作軸于,如圖,在和中,,(),,,,,,而,.故選:.【點睛】本題考查了反比例函數(shù)系數(shù)的幾何意義:從反比例函數(shù)圖象上任意一點向軸于軸作垂線,垂線與坐標軸所圍成的矩形面積為.2、D【解析】根據(jù)函數(shù)的定義可知,滿足對于x的每一個取值,y都有唯一確定的值與之對應關系,據(jù)此即可確定答案.【詳解】A.如圖,,對于該x的值,有兩個y值與之對應,不是函數(shù)圖象;B.如圖,,對于該x的值,有兩個y值與之對應,不是函數(shù)圖象;C.如圖,對于該x的值,有兩個y值與之對應,不是函數(shù)圖象;D.對每一個x的值,都有唯一確定的y值與之對應,是函數(shù)圖象.故選:D.【點睛】本題考查了函數(shù)的定義.函數(shù)的定義:在一個變化過程中,有兩個變量x,y,對于x的每一個取值,y都有唯一確定的值與之對應,則y是x的函數(shù),x叫自變量.3、B【解析】必然事件就是一定會發(fā)生的事件,依據(jù)定義即可判斷.【詳解】A、明天太陽從北邊升起是不可能事件,錯誤;B、實心鉛球投入水中會下沉是必然事件,正確;C、籃球隊員在罰球線投籃一次,投中是隨機事件,錯誤;D、拋出一枚硬幣,落地后正面向上是隨機事件,錯誤;故選B.【點睛】考查的是必然事件、不可能事件、隨機事件的概念,必然事件是指在一定條件下,一定發(fā)生的事件.4、C【解析】由拋物線解析式可確定其開口方向、對稱軸、頂點坐標,可判斷①②③,再利用增減性可判斷④,可求得答案.【詳解】∵∴拋物線開口向上,對稱軸為直線x=?1,頂點坐標為(?1,3),故②不正確,①③正確,∵拋物線開口向上,且對稱軸為x=?1,∴當x>?1時,y隨x的增大而增大,∴當x>1時,y隨x的增大而增大,故④正確,∴正確的結論有3個,故選:C.【點睛】考查二次函數(shù)的圖象與性質,掌握二次函數(shù)的開口方向、對稱軸、頂點坐標的求解方法是解題的關鍵.5、D【解析】根據(jù)等可能事件的概率公式,即可求解.【詳解】÷=,答:他看該電視臺早間新聞的概率大約是.故選D.【點睛】本題主要考查等可能事件的概率公式,掌握概率公式,是解題的關鍵.6、D【分析】根據(jù)頂點式,頂點坐標是(h,k),即可求解.【詳解】∵頂點式,頂點坐標是(h,k),∴拋物線的頂點坐標是(1,2).故選D.7、D【解析】試題分析:扇形面積的計算公式為:,故選擇D.8、B【分析】逐一對選項進行分析即可.【詳解】A.必然事件的概率為1,該選項說法正確,不符合題意;B.心想事成,萬事如意是隨機事件,該選項說法錯誤,符合題意;C.平分弦(非直徑)的直徑垂直弦,該選項說法正確,不符合題意;D.的平方根是,該選項說法正確,不符合題意;故選:B.【點睛】本題主要考查命題的真假,掌握隨機事件,垂徑定理,平方根的概念是解題的關鍵.9、C【解析】分析:根據(jù)絕對值的定義求解,第一步列出絕對值的表達式,第二步根據(jù)絕對值定義去掉這個絕對值的符號.詳解:﹣的絕對值為|-|=-(﹣)=.點睛:主要考查了絕對值的定義,絕對值規(guī)律總結:一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);1的絕對值是1.10、C【分析】先求兩圓半徑的和與差,再與圓心距進行比較,確定兩圓的位置關系.【詳解】解:∵兩圓的半徑分別是2和4,圓心距是3,
則2+4=6,4-2=2,
∴2<3<6,
圓心距介于兩圓半徑的差與和之間,兩圓相交.故選C.【點睛】本題利用了兩圓相交,圓心距的長度在兩圓的半徑的差與和之間求解.二、填空題(每小題3分,共24分)11、且【分析】根據(jù)分母不等于0,且被開方數(shù)是非負數(shù)列式求解即可.【詳解】由題意得x-1≥0且x-2≠0,解得且故答案為:且【點睛】本題考查了代數(shù)式有意義時字母的取值范圍,代數(shù)式有意義時字母的取值范圍一般從幾個方面考慮:①當代數(shù)式是整式時,字母可取全體實數(shù);②當代數(shù)式是分式時,考慮分式的分母不能為0;③當代數(shù)式是二次根式時,被開方數(shù)為非負數(shù).12、【分析】根據(jù)“反比例函數(shù)”可知k=3,可知該函數(shù)圖像過第一、三象限,在第一象限,y隨x的增大而減小且y>0,在第三象限,y隨x的增大而減小且y<0,據(jù)此進行排序即可.【詳解】由題意可知該函數(shù)圖像過第一、三象限,在第一象限,y隨x的增大而減小且y>0,在第三象限,y隨x的增大而減小且y<0,因為所以所以故答案填.【點睛】本題考查的是反比例函數(shù)的性質,能夠熟練掌握反比例函數(shù)的性質是解題的關鍵.13、64【分析】根據(jù)等弧所對的圓心角相等求得∠AOE=∠COA=32°,所以∠COE=∠AOE+∠COA=64°.【詳解】解:∵弧AE=弧AC,(已知)
∴∠AOE=∠COA(等弧所對的圓心角相等);
又∠AOE=32°,
∴∠COA=32°,
∴∠COE=∠AOE+∠COA=64°.
故答案是:64°.【點睛】本題考查圓心角、弧、弦的關系.在同圓或等圓中,兩個圓心角、兩條弧、兩條弦三組量之間,如果有一組量相等,那么,它們所對應的其它量也相等.14、【分析】設扇形的弧長,然后,建立關系式,結合二次函數(shù)的圖象與性質求解最值即可.【詳解】設扇形面積為S,半徑為r,圓心角為α,則扇形弧長為a-2r,所以S=(a-2r)r=-(r-)2+.故當r=時,扇形面積最大為.∴∴此時,扇形的弧長為2r,∴,∴故答案為:.【點睛】本題重點考查了扇形的面積公式、弧長公式、二次函數(shù)的最值等知識,屬于基礎題.15、25【解析】首先求出∠HDB的度數(shù),再利用直角三角形斜邊中線定理可得OH=OD,由此可得∠OHD=∠ODH即可解決問題.【詳解】∵四邊形ABCD是菱形,∴AC⊥BD,DO=OB,∠DAO=∠BAO=25°,∴∠ABO=90°?∠BAO=65°,∵DH⊥AB,∴∠DHB=90°,∴∠BDH=90°?ABO=25°,在Rt△DHB中,∵OD=OB,∴OH=OD=OB,∴∠DHO=∠HDB=25°,故答案為:25.【點睛】本題考查了菱形的性質,直角三角形斜邊中線定理,熟練掌握性質定理是解題的關鍵.16、【分析】根據(jù)圓的面積-正方形的面積=可耕地的面積即可解答.【詳解】解:∵正方形的邊長是x步,圓的半徑為()步∴列方程得:.故答案為.【點睛】本題考查圓的面積計算公式,解題關鍵是找出等量關系.17、【解析】分析:利用平方差公式直接分解即可求得答案.解答:解:a2-b2=(a+b)(a-b).故答案為(a+b)(a-b).18、(6,4).【分析】作BQ⊥AC于點Q,由題意可得BQ=12,根據(jù)勾股定理分別求出BC、AB的長,繼而利用三角形面積,可得△OAB內(nèi)切圓半徑,過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設AD=AF=x,則CD=CE=14-x,BF=13-x,BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解之求出x的值,從而得出點P的坐標,即可得出答案.【詳解】解:如圖,過點B作BQ⊥AC于點Q,則AQ=5,BQ=12,∴AB=,CQ=AC-AQ=9,∴BC=設⊙P的半徑為r,根據(jù)三角形的面積可得:r=過點P作PD⊥AC于D,PF⊥AB于F,PE⊥BC于E,設AD=AF=x,則CD=CE=14-x,BF=13-x,∴BE=BC-CE=15-(14-x)=1+x,由BF=BE可得13-x=1+x,解得:x=6,∴點P的坐標為(6,4),故答案為:(6,4).【點睛】本題主要考查勾股定理、三角形的內(nèi)切圓半徑公式及切線長定理,根據(jù)三角形的內(nèi)切圓半徑公式及切線長定理求出點P的坐標是解題的關鍵.三、解答題(共66分)19、(1)1,1,a的值為1;(2)要選出一個成績較穩(wěn)定的班級爭奪團體第一名,選擇甲班,因為乙班數(shù)據(jù)的離散程度較大,發(fā)揮不穩(wěn)定;要爭取個人進球數(shù)進入學校前三名,則選擇乙班,要看出現(xiàn)高分的可能性,乙班個人成績在9分以上的人數(shù)比甲班多,因此選擇乙班.【分析】(1)根據(jù)已知信息,將乙班的選手的進球數(shù)量從小到大排列,計算處在正中間的兩個數(shù)的平均數(shù)即可;根據(jù)已知信息,甲班選手的進球數(shù)量中出現(xiàn)次數(shù)最多的進球數(shù)即為c的值;先計算乙班總進球數(shù),再用總數(shù)除以人數(shù)即可;(2)從這兩個班中選出一個成績較為穩(wěn)定的班代表年級參加學校的投籃比賽,要看兩個班的數(shù)據(jù)離散程度;如果要爭取個人進球數(shù)進入學校前三名,要根據(jù)個人進球數(shù)在9個以上的人數(shù),哪個班多就從哪個班選.【詳解】解:(1)乙班進球數(shù)從小到大排列后處在第5、6位的數(shù)都是1個,因此乙班進球數(shù)的中位數(shù)是1個;根據(jù)圖表,甲班進球數(shù)出現(xiàn)次數(shù)最多的是1個,因此甲班進球數(shù)的眾數(shù)為c=1;a=.故答案為:1;1;a的值為1.(2)要想選取成績較穩(wěn)定的班級來爭奪總進球數(shù)團體第一名,選擇甲班較好,甲班的平均數(shù)雖然與乙班相同,但是=1.2=4∴乙班數(shù)據(jù)的離散程度較大,發(fā)揮不穩(wěn)定,因此選擇甲班;要爭取個人進球數(shù)進入學校前三名,則選擇乙班,要看出現(xiàn)高分的可能性,乙班個人成績在9分以上的人數(shù)比甲班多.因此選擇乙班.【點睛】本題主要考查平均數(shù)、中位數(shù)、眾數(shù)以及方差的意義,掌握平均數(shù)、中位數(shù)、眾數(shù)的求解方法以及方差的意義是解答本題的關鍵.20、二次函數(shù)為,頂點.【分析】先設該二次函數(shù)的解析式為y=ax2+bx+c(a≠0),利用待定系數(shù)法求a,b,c的值,得到二次函數(shù)的解析式,然后化為頂點式,即可得到頂點坐標.【詳解】解:∵二次函數(shù)的圖象經(jīng)過,可設所求二次函數(shù)為,由已知,函數(shù)的圖象不經(jīng)過,兩點,可得關于、的二元一次方程組解這個方程,得∴二次函數(shù)為:;化為頂點式得:∴頂點為:.【點睛】本題考查了用待定系數(shù)法求函數(shù)解析式的方法,同時還考查了方程組的解法以及頂點公式求法等知識,難度不大.21、(1)見詳解,(2)DE=2【解析】(1)利用有一組對邊平行且相等的四邊形是平行四邊形,有一個角是90°的平行四邊形是矩形即可證明,(2)利用30°角所對直角邊是斜邊的一半和勾股定理即可解題.【詳解】解:(1)∵CD⊥AB,BE⊥AB,∴CD∥BE,∵BE=CD,∴四邊形CDBE是矩形,(2)在Rt△ABC中,∵∠ABC=30°,AC=2,∴AB=4,(30°角所對直角邊是斜邊的一半)∴DE=BC=2(勾股定理)【點睛】本題考查了矩形的證明和特殊直角三角形的性質,屬于簡單題,熟悉判定方法是解題關鍵.22、(1)y=x2-2x-1.(2)M(1,-2).(1P(1,-4).【解析】分析:(1)根據(jù)拋物線的對稱軸可求出B點的坐標,進而可用待定系數(shù)法求出拋物線的解析式;(2)由于A、B關于拋物線的對稱軸直線對稱,若連接BC,那么BC與直線x=1的交點即為所求的點M;可先求出直線BC的解析式,聯(lián)立拋物線對稱軸方程即可求得M點的坐標;(1)若∠PCB=90°,根據(jù)△BCO為等腰直角三角形,可推出△CDP為等腰直角三角形,根據(jù)線段長度求P點坐標.詳解:(1)∵拋物線的對稱軸為x=1,且A(﹣1,0),∴B(1,0);可設拋物線的解析式為y=a(x+1)(x﹣1),由于拋物線經(jīng)過C(0,﹣1),則有:a(0+1)(0﹣1)=﹣1,a=1,∴y=(x+1)(x﹣1)=x2﹣2x﹣1;(2)由于A、B關于拋物線的對稱軸直線x=1對稱,那么M點為直線BC與x=1的交點;由于直線BC經(jīng)過C(0,﹣1),可設其解析式為y=kx﹣1,則有:1k﹣1=0,k=1;∴直線BC的解析式為y=x﹣1;當x=1時,y=x﹣1=﹣2,即M(1,﹣2);(1)設經(jīng)過C點且與直線BC垂直的直線為直線l,作PD⊥y軸,垂足為D;∵OB=OC=1,∴CD=DP=1,OD=OC+CD=4,∴P(1,﹣4).點睛:本題考查了二次函數(shù)解析式的確定、軸對稱的性質以及特殊三角形的性質等知識,難度適中.23、(1)2秒;(2)3秒.【分析】(1)證得△ABC、△ADE和△DBF都是等腰直角三角形,利用,列式計算即可;(2)根據(jù),列式計算即可求得答案.【詳解】(1)設移動秒,的面積等于面積的四分之一,∵,,,∴△ABC為等腰直角三角形,,∵,,∴△ADE和△DBF都是等腰直角三角形,
∴,,∵,∴,即,解得:(秒);(2)設移動秒,四邊形面積,由(1)得:,,∵,∴即解得:(秒).【點睛】本題主要考查了列代數(shù)式以及一元二次方程的應用,等腰三角形的判定和性質,利用三角形的面積公式,找出關于的一元二次方程是解題的關鍵.24、(1)A社區(qū)居民人口至少有2.1萬人;(2)10.【分析】(1)設A社區(qū)居民人口有x萬人,根據(jù)“B社區(qū)居民人口數(shù)量不超過A社區(qū)居民人口數(shù)量的2倍”列出不等式求解即可;
(2)A社區(qū)的知曉人數(shù)+B社區(qū)的知曉人數(shù)=7.1×76%,據(jù)此列出關于m的方程并解答.【詳解】解:(1)設A社區(qū)居民人口有x萬人,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年教育決策:大數(shù)據(jù)驅動下的學校治理與績效評價報告
- 房地產(chǎn)企業(yè)2025年財務風險控制與穩(wěn)健性發(fā)展策略報告
- 2025年元宇宙社交平臺用戶行為分析與互動模式研究報告
- 虛擬現(xiàn)實教育產(chǎn)品在職業(yè)院校計算機專業(yè)教學中的應用效果報告
- 2025年元宇宙社交平臺社交圈層構建與社區(qū)生態(tài)研究報告
- 2025年元宇宙基礎設施建設關鍵環(huán)節(jié):區(qū)塊鏈技術應用現(xiàn)狀與展望報告
- 2025年江蘇省常州市八年級英語第二學期期末預測試題含答案
- 深度剖析2025年教育行業(yè)招生策略與行業(yè)競爭態(tài)勢分析報告001
- 保育員考試題目及答案2019
- 保安師傅考試試題及答案
- 中央空調維護保養(yǎng)服務投標方案(技術標)
- 服務認證培訓課件
- 風電場反事故措施
- 細胞生物學與疾病預防與治療
- 《銀行業(yè)風險管理》課件
- 工程倫理 課件全套 李正風 第1-9章 工程與倫理、如何理解倫理- 全球化視野下的工程倫理
- 餐飲服務質量保證措施
- 美國FDA-21CFR820法規(guī)培訓
- 報名統(tǒng)計表格
- 乒乓球循環(huán)賽積分表決賽
- 精神發(fā)育遲滯的護理查房
評論
0/150
提交評論