




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆新鄉(xiāng)市重點(diǎn)中學(xué)高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)數(shù)列的前項(xiàng)和為,且,則數(shù)列的前10項(xiàng)的和是()A.290 B. C. D.2.要得到函數(shù)y=cos4x+πA.向左平移π3個單位長度 B.向右平移πC.向左平移π12個單位長度 D.向右平移π3.化簡的結(jié)果是()A. B. C. D.4.角的終邊過點(diǎn),則等于()A. B. C. D.5.已知數(shù)列的前項(xiàng)和為,,且滿足,若,則的值為()A. B. C. D.6.已知函數(shù)是定義在上的偶函數(shù),且在區(qū)間上單調(diào)遞增.若實(shí)數(shù)滿足,則的最大值是()A.1 B. C. D.7.若,且,則xy的最大值為()A. B. C. D.8.一個多面體的三視圖如圖所示.設(shè)在其直觀圖中,M為AB的中點(diǎn),則幾何體的體積為()A. B. C. D.9.秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個實(shí)例,若輸入n,x的值分別為3,2,則輸出v的值為A.35 B.20 C.18 D.910.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為5的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲1000個點(diǎn),己知恰有400個點(diǎn)落在陰影部分,據(jù)此可估計陰影部分的面積是A.2 B.3 C.10 D.15二、填空題:本大題共6小題,每小題5分,共30分。11.在圓心為,半徑為的圓內(nèi)接中,角,,的對邊分別為,,,且,則的面積為__________.12.已知點(diǎn)和點(diǎn),點(diǎn)在軸上,若的值最小,則點(diǎn)的坐標(biāo)為______.13.已知數(shù)列的通項(xiàng)公式為,是其前項(xiàng)和,則_____.(結(jié)果用數(shù)字作答)14.在中,,,則角_____.15.如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一個周期的圖象,則f(1)=__________.16.已知數(shù)列的前項(xiàng)和是,且,則______.(寫出兩個即可)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),且.(1)求的值;(2)若在上有且只有一個零點(diǎn),,求的取值范圍.18.如圖,已知平面,為矩形,分別為的中點(diǎn),.(1)求證:平面;(2)求證:面平面;(3)求點(diǎn)到平面的距離.19.某種汽車的購車費(fèi)用是10萬元,每年使用的保險費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)約為萬元,年維修費(fèi)用第一年是萬元,第二年是萬元,第三年是萬元,…,以后逐年遞增萬元汽車的購車費(fèi)用、每年使用的保險費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)、維修費(fèi)用的和平均攤到每一年的費(fèi)用叫做年平均費(fèi)用.設(shè)這種汽車使用年的維修費(fèi)用的和為,年平均費(fèi)用為.(1)求出函數(shù),的解析式;(2)這種汽車使用多少年時,它的年平均費(fèi)用最小?最小值是多少?20.設(shè),若存在,使得,且對任意,均有(即是一個公差為的等差數(shù)列),則稱數(shù)列是一個長度為的“弱等差數(shù)列”.(1)判斷下列數(shù)列是否為“弱等差數(shù)列”,并說明理由.①1,3,5,7,9,11;②2,,,,.(2)證明:若,則數(shù)列為“弱等差數(shù)列”.(3)對任意給定的正整數(shù),若,是否總存在正整數(shù),使得等比數(shù)列:是一個長度為的“弱等差數(shù)列”?若存在,給出證明;若不存在,請說明理由21.已知,,且(1)求函數(shù)的解析式;(2)當(dāng)時,的最小值是,求此時函數(shù)的最大值,并求出函數(shù)取得最大值時自變量的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
由得為等差數(shù)列,求得,得利用裂項(xiàng)相消求解即可【詳解】由得,當(dāng)時,,整理得,所以是公差為4的等差數(shù)列,又,所以,從而,所以,數(shù)列的前10項(xiàng)的和.故選.【點(diǎn)睛】本題考查遞推關(guān)系求通項(xiàng)公式,等差數(shù)列的通項(xiàng)及求和公式,裂項(xiàng)相消求和,熟記公式,準(zhǔn)確得是等差數(shù)列是本題關(guān)鍵,是中檔題2、C【解析】
先化簡得y=cos【詳解】因?yàn)閥=cos所以要得到函數(shù)y=cos4x+π3的圖像,只需將函數(shù)故選:C【點(diǎn)睛】本題主要考查三角函數(shù)的圖像的變換,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.3、A【解析】
根據(jù)平面向量加法及數(shù)乘的幾何意義,即可求解,得到答案.【詳解】根據(jù)平面向量加法及數(shù)乘的幾何意義,可得,故選A.【點(diǎn)睛】本題主要考查了平面向量的加法法則的應(yīng)用,其中解答中熟記平面向量的加法法則是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、B【解析】由三角函數(shù)的定義知,x=-1,y=2,r==,∴sinα==.5、D【解析】
由遞推關(guān)系可證得數(shù)列為等差數(shù)列,利用等差數(shù)列通項(xiàng)公式求得公差;利用等差數(shù)列通項(xiàng)公式和前項(xiàng)和公式分別求得和,代入求得結(jié)果.【詳解】由得:數(shù)列為等差數(shù)列,設(shè)其公差為,,解得:,本題正確選項(xiàng):【點(diǎn)睛】本題考查等差數(shù)列基本量的計算,涉及到利用遞推關(guān)系式證明數(shù)列為等差數(shù)列、等差數(shù)列通項(xiàng)公式和前項(xiàng)和公式的應(yīng)用.6、D【解析】由圖象性質(zhì)可知,,解得,故選D。7、D【解析】
利用基本不等式可直接求得結(jié)果.【詳解】(當(dāng)且僅當(dāng)時取等號)的最大值為故選:【點(diǎn)睛】本題考查利用基本不等式求解積的最大值的問題,屬于基礎(chǔ)題.8、D【解析】
利用棱柱的體積減去兩個棱錐的體積,求解即可.【詳解】由題意可知幾何體C?MEF的體積:VADF?BCE?VF?AMCD?VE?MBC=.故選:D.【點(diǎn)睛】本題考查簡單空間圖形的三視圖及體積計算,根據(jù)三視圖求得幾何體的棱長及關(guān)系,利用幾何體體積公式即可求解,考查運(yùn)算能力和空間想象能力,屬于基礎(chǔ)題.9、C【解析】試題分析:模擬算法:開始:輸入成立;,成立;,成立;,不成立,輸出.故選C.考點(diǎn):1.數(shù)學(xué)文化;2.程序框圖.10、C【解析】
根據(jù)古典概型概率公式以及幾何概型概率公式分別計算概率,解方程可得結(jié)果.【詳解】設(shè)陰影部分的面積是s,由題意得4001000【點(diǎn)睛】(1)當(dāng)試驗(yàn)的結(jié)果構(gòu)成的區(qū)域?yàn)殚L度、面積、體積等時,應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時,關(guān)鍵是試驗(yàn)的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
已知條件中含有這一表達(dá)式,可以聯(lián)想到余弦定理進(jìn)行條件替換;利用同弧所對圓心角為圓周角的兩倍,先求出角的三角函數(shù)值,再求的正弦值,進(jìn)而即可得解.【詳解】,,在中,代入(1)式得:,整理得:圓周角等于圓心角的兩倍,,(1)當(dāng)時,,,.(1)當(dāng)時,,點(diǎn)在的外面,此時,,.【點(diǎn)睛】本題對考生的計算能力要求較高,對解三角形和平面幾何知識進(jìn)行綜合考查.12、【解析】
作出圖形,作點(diǎn)關(guān)于軸的對稱點(diǎn),由對稱性可知,結(jié)合圖形可知,當(dāng)、、三點(diǎn)共線時,取最小值,并求出直線的方程,與軸方程聯(lián)立,即可求出點(diǎn)的坐標(biāo).【詳解】如下圖所示,作點(diǎn)關(guān)于軸的對稱點(diǎn),由對稱性可知,則,當(dāng)且僅當(dāng)、、三點(diǎn)共線時,的值最小,直線的斜率為,直線的方程為,即,聯(lián)立,解得,因此,點(diǎn)的坐標(biāo)為.故答案為:.【點(diǎn)睛】本題考查利用折線段長的最小值求點(diǎn)的坐標(biāo),涉及兩點(diǎn)關(guān)于直線對稱性的應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.13、.【解析】
由題意知,數(shù)列的偶數(shù)項(xiàng)成等差數(shù)列,奇數(shù)列成等比數(shù)列,然后利用等差數(shù)列和等比數(shù)列的求和公式可求出的值.【詳解】由題意可得,故答案為.【點(diǎn)睛】本題考查奇偶分組求和,同時也考查等差數(shù)列求和以及等比數(shù)列求和,解題時要得出公差和公比,同時也要確定出對應(yīng)的項(xiàng)數(shù),考查運(yùn)算求解能力,屬于中等題.14、或【解析】
本題首先可以通過解三角形面積公式得出的值,再根據(jù)三角形內(nèi)角的取值范圍得出角的值。【詳解】由解三角形面積公式可得:即因?yàn)椋曰颉军c(diǎn)睛】在解三角形過程中,要注意求出來的角的值可能有多種情況。15、2【解析】
由三角函數(shù)圖象,利用三角函數(shù)的性質(zhì),求得函數(shù)的解析式,即可求解的值,得到答案.【詳解】由三角函數(shù)圖象,可得,由,得,于是,又,即,解得,所以,則.【點(diǎn)睛】本題主要考查了由三角函數(shù)的部分圖象求解函數(shù)的解析式及其應(yīng)用,其中解答中熟記三角函數(shù)的圖象與性質(zhì),準(zhǔn)確計算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.16、或【解析】
利用已知求的公式,即可算出結(jié)果.【詳解】(1)當(dāng),得,∴,∴.(2)當(dāng)時,,兩式作差得,,化簡得,∴或,即(常數(shù))或,當(dāng)(常數(shù))時,數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列,所以;當(dāng)時,數(shù)列是以1為首項(xiàng),﹣1為公比的等比數(shù)列,所以.【點(diǎn)睛】本題主要考查利用與的關(guān)系公式,即,求的方法應(yīng)用.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用降次公式、輔助角公式化簡表達(dá)式,利用求得的值.(2)令,結(jié)合的取值范圍以及三角函數(shù)的零點(diǎn)列不等式,解不等式求得的取值范圍.【詳解】(1),,,即.(2)令,則,,,在上有且只有一個零點(diǎn),,,的取值范圍為.【點(diǎn)睛】本小題主要考查三角恒等變換,考查三角函數(shù)零點(diǎn)問題,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.18、(1)證明見解析;(2)證明見解析;(3).【解析】
(1)利用線面平行的判定定理,尋找面PAD內(nèi)的一條直線平行于MN,即可證出;(2)先證出一條直線垂直于面PCD,依據(jù)第一問結(jié)論知,MN也垂直于面PCD,利用面面垂直的判定定理即可證出;(3)依據(jù)等積法,即可求出點(diǎn)到平面的距離.【詳解】證明:(1)取中點(diǎn)為,連接分別為的中點(diǎn),是平行四邊形,平面,平面,∴平面證明:(2)因?yàn)槠矫妫裕?面PAD,而面,所以,由,為的終點(diǎn),所以由于平面,又由(1)知,平面,平面,∴平面平面解:(3),,,則點(diǎn)到平面的距離為(也可構(gòu)造三棱錐)【點(diǎn)睛】本題主要考查線面平行、面面垂直的判定定理以及等積法求點(diǎn)到面的距離,意在考查學(xué)生的直觀想象、邏輯推理、數(shù)學(xué)運(yùn)算能力.19、(1),;(2)時,年平均費(fèi)用最小,最小值為3萬元.【解析】試題分析:根據(jù)題意可知,汽車使用年的維修費(fèi)用的和為,而第一年的維修費(fèi)用是萬元,以后逐年遞增萬元,每一年的維修費(fèi)用形成以為首項(xiàng),為公差的等差數(shù)列,根據(jù)等差數(shù)列的前項(xiàng)和即可求出的解析式;將購車費(fèi)、每年使用的保險費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)以及維修費(fèi)用之和除以即可得到年平均費(fèi)用,根據(jù)基本不等式即可求出平均費(fèi)用的最小值.試題解析:(1)根據(jù)題意可知,汽車使用年的維修費(fèi)用的和為,而第一年的維修費(fèi)用是萬元,以后逐年遞增萬元,每一年的維修費(fèi)用形成以為首項(xiàng),為公差的等差數(shù)列,根據(jù)等差數(shù)列的前項(xiàng)和公式可得:因?yàn)橘徿囐M(fèi)、每年使用的保險費(fèi)、養(yǎng)路費(fèi)、汽油費(fèi)以及維修費(fèi)用之和為,所以年平均費(fèi)用為;(2)因?yàn)樗援?dāng)且僅當(dāng)即時,年平均費(fèi)用最小,最小值為3萬元.考點(diǎn):本題考查了等差數(shù)列的前項(xiàng)和公式以的掌握,以及基本不等式的應(yīng)用,同時考查了學(xué)生解決實(shí)際應(yīng)用題的能力.20、(1)①是,②不是,理由見解析(2)證明見解析(3)存在,證明見解析【解析】
(1)①舉出符合條件的具體例子即可;②反證法推出矛盾;
(2)根據(jù)題意找出符合條件的為等差數(shù)列即可;
(3)首先,根據(jù),將公差表示出來,計算任意相鄰兩項(xiàng)的差值可以發(fā)現(xiàn)不大于.那么用裂項(xiàng)相消的方法表示出,結(jié)合相鄰兩項(xiàng)差值不大于可以得到,接下來,只需證明存在滿足條件的即可.用和公差表示出,并展開可以發(fā)現(xiàn)多項(xiàng)式的最高次項(xiàng)為,而已知,因此在足夠大時顯然成立.結(jié)論得證.【詳解】解:(1)數(shù)列①:1,3,5,7,9,11是“弱等差數(shù)列”
取分別為1,3,5,7,9,11,13即可;
數(shù)列②2,,,,不是“弱等差數(shù)列”
否則,若數(shù)列②為“弱等差數(shù)列”,則存在實(shí)數(shù)構(gòu)成等差數(shù)列,設(shè)公差為,
,
,又與矛盾,所以數(shù)列②2,,,,不是“弱等差數(shù)列”;
(2)證明:設(shè),
令,取,則,
則,
,
,
就有,命題成立.
故數(shù)列為“弱等差數(shù)列”;(3)若存在這樣的正整數(shù),使得
成立.
因?yàn)椋?/p>
則,其中待定.
從而,
又,∴當(dāng)時,總成立.
如果取適當(dāng)?shù)模沟茫钟?/p>
所以,有
,
為使得,需要,
上式左側(cè)展開為關(guān)于的多項(xiàng)式,最高次項(xiàng)為,其
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030中國智慧交通市場競爭狀況及融資并購分析報告
- 2025至2030中國料酒市場銷售渠道及多樣化方向發(fā)展調(diào)研報告
- 2025至2030中國數(shù)據(jù)管理平臺(DMP)軟件行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國故障指示燈(MIL)行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國抗生素多環(huán)行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國廣播行業(yè)經(jīng)營風(fēng)險及運(yùn)營模式創(chuàng)新分析報告
- 2025至2030中國干蜂蜜產(chǎn)品行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025至2030中國帆板腳帶行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
- 2025年西式面點(diǎn)師實(shí)操考核試卷(實(shí)操面點(diǎn)制作美食行業(yè)數(shù)字化轉(zhuǎn)型)
- 2025年花藝師職業(yè)資格考試真題卷:花藝作品市場銷售策略試題
- 懸挑式腳手架驗(yàn)收表范本
- 可控震源日常維護(hù)及安全操作規(guī)程
- T∕ACSC 01-2022 輔助生殖醫(yī)學(xué)中心建設(shè)標(biāo)準(zhǔn)(高清最新版)
- 校園環(huán)境衛(wèi)生管理制度
- 建設(shè)工程項(xiàng)目監(jiān)理人員變更申請表
- 房產(chǎn)證英文翻譯件模板
- 板形與板形控制基礎(chǔ)知識
- 過敏性休克ppt課件
- 熱血傳奇架設(shè)及參數(shù)設(shè)置修改
- 金礦堆浸初步設(shè)計
- 有限空間作業(yè)應(yīng)急預(yù)案(最新版)
評論
0/150
提交評論