安徽省合肥市第三十五中學2025屆高一下數學期末統考試題含解析_第1頁
安徽省合肥市第三十五中學2025屆高一下數學期末統考試題含解析_第2頁
安徽省合肥市第三十五中學2025屆高一下數學期末統考試題含解析_第3頁
安徽省合肥市第三十五中學2025屆高一下數學期末統考試題含解析_第4頁
安徽省合肥市第三十五中學2025屆高一下數學期末統考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省合肥市第三十五中學2025屆高一下數學期末統考試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若一個人下半身長(肚臍至足底)與全身長的比近似為5-12(5-12≈0.618A.身材完美,無需改善 B.可以戴一頂合適高度的帽子C.可以穿一雙合適高度的增高鞋 D.同時穿戴同樣高度的增高鞋與帽子2.如圖所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分別是BF,CE上的點,AD∥BC,且AB=DE=2BC=2AF(如圖1),將四邊形ADEF沿AD折起,連結BE、BF、CE(如圖2).在折起的過程中,下列說法中正確的個數()①AC∥平面BEF;②B、C、E、F四點可能共面;③若EF⊥CF,則平面ADEF⊥平面ABCD;④平面BCE與平面BEF可能垂直A.0 B.1 C.2 D.33.在ΔABC中,如果A=45°,c=6,A.無解 B.一解 C.兩解 D.無窮多解4.若圓與圓外切,則()A.21 B.19 C.9 D.-115.下列結論正確的是()A.空間中不同三點確定一個平面B.空間中兩兩相交的三條直線確定一個平面C.一條直線和一個點能確定一個平面D.梯形一定是平面圖形6.已知,向量,則向量()A. B. C. D.7.在長方體中,,,則直線與平面所成角的正弦值為()A. B. C. D.8.在中,若,,,則角的大小為()A.30° B.45°或135° C.60° D.135°9.執行如圖所示的程序語句,輸出的結果為()A. B.C. D.10.設向量,,則是的A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.某單位共有200名職工參加了50公里徒步活動,其中青年職工與老年職工的人數比為,中年職工有24人,現采取分層抽樣的方法抽取50人參加對本次活動滿意度的調查,那么應抽取老年職工的人數為________人.12.給出下列四個命題:①正切函數在定義域內是增函數;②若函數,則對任意的實數都有;③函數的最小正周期是;④與的圖象相同.以上四個命題中正確的有_________(填寫所有正確命題的序號)13.在我國古代數學著作《孫子算經》中,卷下第二十六題是:今有物,不知其數,三三數之剩二,五五數之剩三,七七數之剩二,問物幾何?滿足題意的答案可以用數列表示,該數列的通項公式可以表示為________14.若等差數列和等比數列滿足,,則_______.15.若,則=_________________16.已知,,,的等比中項是1,且,,則的最小值是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,已知,是邊上的一點,,,.(1)求的大小;(2)求的長.18.設二次函數f(x)=ax2+bx.(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范圍;(2)當b=1時,若對任意x∈[0,1],-1≤f(x)≤1恒成立,求實數a的取值范圍.19.已知函數.(1)求的值;(2)若,求的取值范圍.20.設為正項數列的前項和,且滿足.(1)求證:為等差數列;(2)令,,若恒成立,求實數的取值范圍.21.已知是夾角為的單位向量,且,.(1)求;(2)求與的夾角.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

對每一個選項逐一分析研究得解.【詳解】A.103103+72B.假設她需要戴上高度為x厘米的帽子,則103175C.假設她可以穿一雙合適高度為y的增高鞋,則103+D.假設同時穿戴同樣高度z的增高鞋與帽子,則103+故選:C【點睛】本題主要考查學生對新定義的理解和應用,屬于基礎題.2、C【解析】

根據折疊前后線段、角的變化情況,由線面平行、面面垂直的判定定理和性質定理對各命題進行判斷,即可得出答案.【詳解】對①,在圖②中,連接交于點,取中點,連接MO,易證AOMF為平行四邊形,即AC//FM,所以AC//平面BEF,故①正確;對②,如果B、C、E、F四點共面,則由BC//平面ADEF,可得BC//EF,又AD//BC,所以AD//EF,這樣四邊形ADEF為平行四邊形,與已知矛盾,故②不正確;對③,在梯形ADEF中,由平面幾何知識易得EFFD,又EFCF,∴EF平面CDF,即有CDEF,∴CD平面ADEF,則平面ADEF平面ABCD,故③正確;對④,在圖②中,延長AF至G,使得AF=FG,連接BG,EG,易得平面BCE平面ABF,BCEG四點共面.過F作FNBG于N,則FN平面BCE,若平面BCE平面BEF,則過F作直線與平面BCE垂直,其垂足在BE上,矛盾,故④錯誤.故選:C.【點睛】本題主要考查線面平行、線面垂直、面面垂直的判定定理和性質定理的應用,意在考查學生的直觀想象能力和邏輯推理能力,屬于中檔題.3、C【解析】

計算出csinA的值,然后比較a、csin【詳解】由題意得csinA=6×2【點睛】本題考查三角形解的個數的判斷,解題時要熟悉三角形解的個數的判斷條件,考查分析問題和解決問題的能力,屬于中等題.4、C【解析】試題分析:因為,所以且圓的圓心為,半徑為,根據圓與圓外切的判定(圓心距離等于半徑和)可得,故選C.考點:圓與圓之間的外切關系與判斷5、D【解析】空間中不共線三點確定一個平面,空間中兩兩相交的三條直線確定一個或三個平面,一條直線和一個直線外一點能確定一個平面,梯形有兩對邊相互平行,所以梯形一定是平面圖形,因此選D.6、A【解析】

由向量減法法則計算.【詳解】.故選A.【點睛】本題考查向量的減法法則,屬于基礎題.7、D【解析】

由題意,由于圖形中已經出現了兩兩垂直的三條直線,所以可以利用空間向量的方法求解直線與平面所成的夾角.【詳解】解:以點為坐標原點,以所在的直線為軸、軸、軸,建立空間直角坐標系,

則,

為平面的一個法向量.

∴直線與平面所成角的正弦值為.故選:D.【點睛】此題重點考查了利用空間向量,抓住直線與平面所成的角與該直線的方向向量與平面的法向量的夾角之間的關系,利用向量方法解決立體幾何問題.8、B【解析】

利用正弦定理得到答案.【詳解】在中正弦定理:或故答案選B【點睛】本題考查了正弦定理,屬于簡單題.9、B【解析】

通過解讀算法框圖功能發現是為了求數列的和,采用裂項相消法即可得到答案.【詳解】由已知中的程序語句可知:該程序的功能是求的值,輸出的結果為,故選B.【點睛】本題主要考查算法框圖基本功能,裂項相消法求和,意在考查學生的分析能力和計算能力.10、C【解析】

利用向量共線的性質求得,由充分條件與必要條件的定義可得結論.【詳解】因為向量,,所以,即可以得到,不能推出,是“”的必要不充分條件,故選C.【點睛】本題主要考查向量共線的性質、充分條件與必要條件的定義,屬于中檔題.利用向量的位置關系求參數是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】

直接利用分層抽樣的比例關系得到答案.【詳解】青年職工與老年職工的人數比為,中年職工有24人,故老年職工為,故應抽取老年職工的人數為.故答案為:.【點睛】本題考查了分層抽樣的相關計算,意在考查學生的計算能力.12、②③④【解析】

①利用反例證明命題錯誤;②先判斷為其中一條對稱軸;③通過恒等變換化成;④對兩個解析式進行變形,得到定義域和對應關系均一樣.【詳解】對①,當,顯然,但,所以,不符合增函數的定義,故①錯;對②,當時,,所以為的一條對稱軸,當取,取時,顯然兩個數關于直線對稱,所以,即成立,故②對;對③,,,故③對;對④,因為,,兩個函數的定義域都是,解析式均為,所以函數圖象相同,故④對.綜上所述,故填:②③④.【點睛】本題對三角函數的定義域、值域、單調性、對稱性、周期性等知識進行綜合考查,求解過程中要注意數形結合思想的應用.13、【解析】

根據題意結合整除中的余數問題、最小公倍數問題,進行分析求解即可.【詳解】由題意得:一個數用3除余2,用7除也余2,所以用3與7的最小公倍數21除也余2,而用21除余2的數我們首先就會想到23;23恰好被5除余3,即最小的一個數為23,同時這個數相差又是3,5,7的最小公倍數,即,即數列的通項公式可以表示為,故答案為:.【點睛】本題以數學文化為背景,利用數列中的整除、最小公倍數進行求解,考查邏輯推理能力和運算求解能力.14、【解析】

設等差數列的公差為,等比數列的公比為,根據題中條件求出、的值,進而求出和的值,由此可得出的值.【詳解】設等差數列的公差和等比數列的公比分別為和,則,求得,,那么,故答案為.【考點】等差數列和等比數列【點睛】等差、等比數列各有五個基本量,兩組基本公式,而這兩組公式可看作多元方程,利用這些方程可將等差、等比數列中的運算問題轉化為解關于基本量的方程(組)問題,因此可以說數列中的絕大部分運算題可看作方程應用題,所以用方程思想解決數列問題是一種行之有效的方法.15、【解析】分析:由二倍角公式求得,再由誘導公式得結論.詳解:由已知,∴.故答案為.點睛:三角函數恒等變形中,公式很多,如誘導公式、同角關系,兩角和與差的正弦(余弦、正切)公式、二倍角公式,先選用哪個公式后選用哪個公式在解題中尤其重要,但其中最重要的是“角”的變換,要分析出已知角與未知角之間的關系,通過這個關系都能選用恰當的公式.16、4【解析】

,的等比中項是1,再用均值不等式得到答案.【詳解】,的等比中項是1當時等號成立.故答案為4【點睛】本題考查了等比中項,均值不等式,意在考查學生的綜合應用能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)在中,由余弦定理得,最后根據的值及,即可得到的值;(2)在中,由正弦定理得到,從而代入數據進行運算即可得到的長.試題解析:(1)在中,,由余弦定理可得又因為,所以(2)在中,由正弦定理可得所以.考點:1.正弦定理;2.余弦定理;3.解斜三角形.18、(1)5≤f(-2)≤10;(2)[-2,0).【解析】

(1)用和表示,再根據不等式的性質求得.(2)對進行參變分離,根據和求得.【詳解】解(1)方法一?∵f(-2)=4a-2b=3f(-1)+f(1),且1≤f(-1)≤2,2≤f(1)≤4,∴5≤f(-2)≤10.方法二設f(-2)=mf(-1)+nf(1),即4a-2b=m(a-b)+n(a+b)=(m+n)a-(m-n)b,比較兩邊系數:?∴f(-2)=3f(-1)+f(1),下同方法一.(2)當x∈[0,1]時,-1≤f(x)≤1,即-1≤ax2+x≤1,即當x∈[0,1]時,ax2+x+1≥0且ax2+x-1≤0恒成立;當x=0時,顯然,ax2+x+1≥0且ax2+x-1≤0均成立;當x∈(0,1]時,若ax2+x+1≥0恒成立,則a≥--=-(+)2+,而-(+)2+在x∈(0,1]上的最大值為-2,∴a≥-2;當x∈(0,1]時,ax2+x-1≤0恒成立,則a≤-=(-)2-,而(-)2-在x∈(0,1]上的最小值為0,∴a≤0,∴-2≤a≤0,而a≠0,因此所求a的取值范圍為[-2,0).【點睛】本題考查不等式的性質和參變分離的恒成立問題,屬于難度題.19、(1);(2)【解析】

(1)將)化簡為,代入從而求得結果.(2)由,得,從而確定的范圍.【詳解】(1)(2)由,得解得,,即的取值范圍是【點睛】本題主要考查三角函數的化簡求值,不等式的求解,意在考查學生的運算能力和分析能力,難度不大.20、(1)見解析(2)【解析】

(1)根據與的關系,再結合等差數列的定義,即可證明;(2)由(1)可求出,采用裂項相消法求出,要恒成立,只需即可求出.【詳解】(1)由題知:,當得:,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論