2024屆黑龍江省大慶市肇源數(shù)學九上期末質量跟蹤監(jiān)視試題含解析_第1頁
2024屆黑龍江省大慶市肇源數(shù)學九上期末質量跟蹤監(jiān)視試題含解析_第2頁
2024屆黑龍江省大慶市肇源數(shù)學九上期末質量跟蹤監(jiān)視試題含解析_第3頁
2024屆黑龍江省大慶市肇源數(shù)學九上期末質量跟蹤監(jiān)視試題含解析_第4頁
2024屆黑龍江省大慶市肇源數(shù)學九上期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆黑龍江省大慶市肇源數(shù)學九上期末質量跟蹤監(jiān)視試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.同時擲兩個質地均勻的骰子,觀察向上一面的點數(shù),兩個骰子的點數(shù)相同的概率為()A. B. C. D.2.已知關于x的一元二次方程x2﹣4x+c=0的一個根為1,則另一個根是()A.5 B.4 C.3 D.23.如圖,PA是⊙O的切線,OP交⊙O于點B,如果,OB=1,那么BP的長是()A.4 B.2 C.1 D.4.拋物線向右平移4個單位長度后與拋物線重合,若(-1,3)在拋物線上,則下列點中,一定在拋物線上的是()A.(3,3) B.(3,-1) C.(-1,7) D.(-5,3)5.如圖,在平直角坐標系中,過軸正半軸上任意一點作軸的平行線,分別交函數(shù)、的圖象于點、點.若是軸上任意一點,則的面積為()A.9 B.6 C. D.36.在一個不透明的布袋中裝有40個黃、白兩種顏色的球,除顏色外其他都相同,小紅通過多次摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在0.30左右,則布袋中黃球可能有()A.12個 B.14個 C.18個 D.28個7.在平面直角坐標系中,二次函數(shù)的圖象可能是()A. B. C. D.8.下列事件是必然事件的是()A.打開電視機,正在播放籃球比賽 B.守株待兔C.明天是晴天 D.在只裝有5個紅球的袋中摸出1球,是紅球.9.從甲、乙、丙、丁四人中選一人參加詩詞大會比賽,經過三輪初賽,他們的平均成績都是86分,方差如下表,你認為派誰去參賽更合適()選手甲乙丙丁方差1.52.63.53.68A.甲 B.乙 C.丙 D.丁10.在一個不透明紙箱中放有除了標注數(shù)字不同外,其他完全相同的3張卡片,上面分別標有數(shù)字1,2,3,從中任意摸出一張,放回攪勻后再任意摸出一張,兩次摸出的數(shù)字之和為奇數(shù)的概率為()A. B. C. D.11.如圖,在△ABC中,點D在AB上、點E在AC上,若∠A=60°,∠B=68°,AD·AB=AE·AC,則∠ADE等于A.52° B.62° C.68° D.72°12.某校九年級“詩歌大會”比賽中,各班代表隊得分如下(單位:分):9,7,8,7,9,7,6,則各代表隊得分的中位數(shù)是(

)A.9分 B.8分 C.7分 D.6分二、填空題(每題4分,共24分)13.如圖,在中,,,,點是斜邊的中點,則_______;14.如圖,,請補充—個條件:___________,使(只寫一個答案即可).15.如圖,平面直角坐標系中,⊙P與x軸分別交于A、B兩點,點P的坐標為(3,-1),AB=2.將⊙P沿著與y軸平行的方向平移,使⊙P與軸相切,則平移距離為_____.16.如圖,在△ABC中,點D、E分別在△ABC的兩邊AB、AC上,且DE∥BC,如果,,,那么線段BC的長是______.17.如圖所示,直線a經過正方形ABCD的頂點A,分別過正方形的頂點B、D作BF⊥a于點F,DE⊥a于點E,若DE=8,BF=5,則EF的長為__.18.如圖所示,在寬為,長為的矩形耕地上,修筑同樣寬的三條路(互相垂直),把耕地分成大小不等的六塊試驗田,要使試驗田的面積為,道路的寬為_______三、解答題(共78分)19.(8分)把下列多項式分解因式:(1).(2).20.(8分)某商場購進一種每件價格為90元的新商品,在商場試銷時發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系.(1)求出y與x之間的函數(shù)關系式;(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?21.(8分)一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外都相同.(1)攪勻后從袋子中任意摸出1個球,摸到紅球的概率是多少?(2)攪勻后先從袋子中任意摸出1個球,記錄顏色后不放回,再從袋子中任意摸出1個球,用畫樹狀圖或列表的方法列出所有等可能的結果,并求出兩次都摸到白球的概率.22.(10分)解一元二次方程:x2+4x﹣5=1.23.(10分)新羅區(qū)某校元旦文藝匯演,需要從3名女生和1名男生中隨機選擇主持人.(1)如果選擇1名主持人,那么男生當選的概率是多少?(2)如果選擇2名主持人,用畫樹狀圖(或列表)求出2名主持人恰好是1男1女的概率.24.(10分)如圖,在平面直角坐標系中,四邊形的頂點坐標分別為,,,.動點從點出發(fā),以每秒個單位長度的速度沿邊向終點運動;動點從點同時出發(fā),以每秒1個單位長度的速度沿邊向終點運動,設運動的時間為秒,.(1)直接寫出關于的函數(shù)解析式及的取值范圍:_______;(2)當時,求的值;(3)連接交于點,若雙曲線經過點,問的值是否變化?若不變化,請求出的值;若變化,請說明理由.25.(12分)如圖,在平面直角坐標系中,⊙O的半徑為1,點A在x軸的正半軸上,B為⊙O上一點,過點A、B的直線與y軸交于點C,且OA2=AB?AC.(1)求證:直線AB是⊙O的切線;(2)若AB=,求直線AB對應的函數(shù)表達式.26.隨著經濟的快速發(fā)展,環(huán)境問題越來越受到人們的關注,某校學生會為了解節(jié)能減排、垃圾分類知識的普及情況,隨機調查了部分學生,調查結果分為“非常了解”“了解”“了解較少”“不了解”四類,并將調查結果繪制成下面兩個統(tǒng)計圖.(1)本次調查的學生共有人,估計該校1200名學生中“不了解”的人數(shù)是人;(2)“非常了解”的4人有A1,A2兩名男生,B1,B2兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

參考答案一、選擇題(每題4分,共48分)1、C【分析】首先列表,然后根據表格求得所有等可能的結果與兩個骰子的點數(shù)相同的情況,再根據概率公式求解即可.【詳解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36種等可能的結果,兩個骰子的點數(shù)相同的有6種情況,

∴兩個骰子的點數(shù)相同的概率為:故選:C【點睛】此題考查了樹狀圖法與列表法求概率.注意樹狀圖法與列表法可以不重不漏的表示出所有等可能的結果.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比2、C【解析】根據根與系數(shù)的關系可得出兩根之和為4,從而得出另一個根.【詳解】設方程的另一個根為m,則1+m=4,∴m=3,故選C.【點睛】本題考查了一元二次方程根與系數(shù)的關系.解答關于x的一元二次方程x2-4x+c=0的另一個根時,也可以直接利用根與系數(shù)的關系x1+x2=-解答.3、C【分析】根據題意連接OA由切線定義可知OA垂直AP且OA為半徑,以此進行分析求解即可.【詳解】解:連接OA,已知PA是⊙O的切線,OP交⊙O于點B,可知OA垂直AP且OA為半徑,所以三角形OAP為直角三角形,∵,OB=1,∴,OA=OB=1,∴OP=2,BP=OP-OB=2-1=1.故選C.【點睛】本題結合圓的切線定義考查解直角三角形,熟練掌握圓的切線定義以及解直角三角形相關概念是解題關鍵.4、A【分析】利用點的平移進行解答即可.【詳解】解:∵拋物線向右平移4個單位長度后與拋物線重合∴將(-1,3)向右平移4個單位長度的點在拋物線上∴(3,3)在拋物線上故選:A【點睛】本題考查了點的平移與函數(shù)平移規(guī)律,掌握點的規(guī)律是解題的關鍵.5、C【分析】連接OA、OB,利用k的幾何意義即得答案.【詳解】解:連接OA、OB,如圖,因為AB⊥x軸,則AB∥y軸,,,,所以.故選C.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,屬于??碱}型,熟知k的幾何意義是關鍵.6、A【分析】根據概率公式計算即可.【詳解】解:設袋子中黃球有x個,根據題意,得:=0.30,解得:x=12,即布袋中黃球可能有12個,故選:A.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.7、A【分析】根據二次函數(shù)圖像的特點可得.【詳解】解:二次函數(shù)與軸有兩個不同的交點,開口方向向上.故選:A.【點睛】本題考查了二次函數(shù)的圖象,解決本題的關鍵是二次函數(shù)的開口方向和與x軸的交點.8、D【分析】根據必然事件、不可能事件、隨機事件的概念進行解答即可.【詳解】解:打開電視機,正在播放籃球比賽是隨機事件,不符合題意;守株待兔是隨機事件,不符合題意;明天是晴天是隨機事件,不符合題意在只裝有5個紅球的袋中摸出1球,是紅球是必然事件,D符合題意.故選:D.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件.不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.9、A【分析】根據方差的意義即可得.【詳解】方差越小,表示成績波動性越小、越穩(wěn)定觀察表格可知,甲的方差最小,則派甲去參賽更合適故選:A.【點睛】本題考查了方差的意義,掌握理解方差的意義是解題關鍵.10、B【分析】先畫出樹狀圖得出所有等可能的情況的數(shù)量和所需要的情況的數(shù)量,再計算所需要情況的概率即得.【詳解】解:由題意可畫樹狀圖如下:根據樹狀圖可知:兩次摸球共有9種等可能情況,其中兩次摸出球所標數(shù)字之和為奇數(shù)的情況有4種,所以兩次摸出球所標數(shù)字之和為奇數(shù)的概率為:.【點睛】本題考查了概率的求法,能根據題意列出樹狀圖或列表是解題關鍵.11、A【分析】先證明△ADE∽△ACB,根據對應角相等即可求解.【詳解】∵AD·AB=AE·AC,∴,又∠A=∠A,∴△ADE∽△ACB,∴∠ADE=∠C=180°-∠A-∠B=52°,故選A.【點睛】此題主要考查相似三角形的性質,解題的關鍵是熟知相似三角形的判定定理.12、C【解析】分析:根據中位數(shù)的定義,首先將這組數(shù)據按從小到大的順序排列起來,由于這組數(shù)據共有7個,故處于最中間位置的數(shù)就是第四個,從而得出答案.詳解:將這組數(shù)據按從小到大排列為:6<7<7<7<8<9<9,故中位數(shù)為:7分,故答案為C.點睛:本題主要考查中位數(shù),解題的關鍵是掌握中位數(shù)的定義:將一組數(shù)據按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據的中位數(shù).如果這組數(shù)據的個數(shù)是偶數(shù),則中間兩個數(shù)據的平均數(shù)就是這組數(shù)據的中位數(shù).二、填空題(每題4分,共24分)13、5【分析】根據直角三角形斜邊上的中線等于斜邊的一半、等邊三角形的判定和性質解答.【詳解】解:∵在中,,,∴,∵點是斜邊的中點,∴BD=AD,∴△BCD是等邊三角形,BD=BC=5.故答案為:5.【點睛】本題考查直角三角形斜邊上的中線的性質,解題關鍵是熟練掌握直角三角形斜邊上的中線等于斜邊的一半.14、∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE(填一個即可).【分析】根據相似三角形的判定方法,已知一組角相等則再添加一組相等的角或夾該角的兩個邊對應成比例即可推出兩三角形相似.【詳解】∵∠DAB=∠CAE,∴∠DAE=∠BAC,∴當∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE時兩三角形相似.故答案為:∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE(填一個即可).【點睛】本題考查了相似三角形的判定:①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.15、1或1【分析】過點P作PC⊥x軸于點C,連接PA,由垂徑定理得⊙P的半徑為2,因為將⊙P沿著與y軸平行的方向平移,使⊙P與軸相切,分兩種情況進行討論求值即可.由【詳解】解:過點P作PC⊥x軸于點C,連接PA,AB=,,點P的坐標為(1,-1),PC=1,,將⊙P沿著與y軸平行的方向平移,使⊙P與軸相切,①當沿著y軸的負方向平移,則根據切線定理得:PC=PA=2即可,因此平移的距離只需為1即可;②當沿著y軸正方向移動,由①可知平移的距離為3即可.故答案為1或1.【點睛】本題主要考查圓的基本性質及切線定理,關鍵是根據垂徑定理得到圓的半徑,然后進行分類討論即可.16、;【分析】根據DE∥BC可得,再由相似三角形性質列比例式即可求解.【詳解】解:,,,又∵,,,,解得:故答案為:.【點睛】本題主要考查了平行線分線段成比例定理的應用,找準對應線段是解題的關鍵.17、1【分析】本題是典型的一線三角模型,根據正方形的性質、直角三角形兩個銳角互余以及等量代換可以證得△AFB≌△AED;然后由全等三角形的對應邊相等推知AF=DE、BF=AE,所以EF=AF+AE=1.【詳解】解:∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代換);∵BF⊥a于點F,DE⊥a于點E,∴在Rt△AFB和Rt△AED中,∵,∴△AFB≌△DEA(AAS),∴AF=DE=8,BF=AE=5(全等三角形的對應邊相等),∴EF=AF+AE=DE+BF=8+5=1.故答案為:1.【點睛】本題考查了正方形的性質、直角三角形的性質、全等三角形的判定和性質及熟悉一線三角模型是解本題的關鍵.18、1【分析】設道路寬為x米,根據耕地的面積-道路的面積=試驗田的面積,即可得出關于x的一元二次方程,解之即可得出結論.【詳解】解:設道路寬為x米,

根據耕地的面積-道路的面積=試驗田的面積得:,

解得:x1=1,x2=1.

∵1>20,

∴x=1舍去.

答:道路寬為1米.【點睛】本題考查了一元二次方程的應用,根據耕地的面積-道路的面積=試驗田的面積,列出關于x的一元二次方程是解題的關鍵.三、解答題(共78分)19、(1);(2)【分析】(1)原式整理后利用完全平方公式分解即可;(2)原式提取公因式即可得到結果.【詳解】(1);(2).【點睛】本題主要考查了提取公因式法以及公式法分解因式,正確應用乘法公式是解題關鍵.20、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售價定為130元時,每天獲得的利潤最大,最大利潤是2元.【解析】(1)先利用待定系數(shù)法求一次函數(shù)解析式;(2)用每件的利潤乘以銷售量得到每天的利潤W,即W=(x﹣90)(﹣x+170),然后根據二次函數(shù)的性質解決問題.【詳解】(1)設y與x之間的函數(shù)關系式為y=kx+b,根據題意得:,解得:,∴y與x之間的函數(shù)關系式為y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴當x=130時,W有最大值2.答:售價定為130元時,每天獲得的利潤最大,最大利潤是2元.【點睛】本題考查了二次函數(shù)的應用:利用二次函數(shù)解決利潤問題,先利用利潤=每件的利潤乘以銷售量構建二次函數(shù)關系式,然后根據二次函數(shù)的性質求二次函數(shù)的最值,一定要注意自變量x的取值范圍.21、(1);(2),見解析【分析】(1)袋中一共有3個球,有3種等可能的抽取情況,抽取紅球的情況只有1種,摸到紅球的概率即可求出;(2)分別使用樹狀圖法或列表法將抽取球的結果表示出來,第一次共有3種不同的抽取情況,第二次有2種不同的抽取情況,所有等可能出現(xiàn)的結果有6種,找出兩次都是白球的的抽取結果,即可算出概率.【詳解】解:(1)∵袋中一共有3個球,有3種等可能的抽取情況,抽取紅球的情況只有1種,∴;(2)畫樹狀圖,根據題意,畫樹狀圖結果如下:一共有6種等可能出現(xiàn)的結果,兩次都抽取到白球的次數(shù)為2次,∴;用列表法,根據題意,列表結果如下:一共有6種等可能出現(xiàn)的結果,兩次都抽取到白球的次數(shù)為2次,∴.【點睛】本題考查了列表法或樹狀圖法求概率,用圖表的形式將第一次、第二次抽取所可能發(fā)生的情況一一列出,避免遺漏.22、x2=﹣5,x2=2.【分析】利用因式分解法解方程.【詳解】(x+5)(x﹣2)=2,x+5=2或x﹣2=2,所以x2=﹣5,x2=2.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.23、(1);(2)見解析,【分析】(1)由題意根據所有出現(xiàn)的可能情況,然后由概率公式即可求出男生當選的概率;(2)首先根據題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與選出的是1名男生1名女生的情況,然后由概率公式即可求解.【詳解】解:(1)∵需要從3名女生和1名男生中隨機選擇1名主持人,∴男生當選的概率P(男生)=.(2)根據題意畫畫樹狀圖,總共有12種結果,每種結果出現(xiàn)的可能性相同,而2名主持人恰好是1男1女的結果有6種,所以2名主持人恰好是1男1女的概率P(一男一女)=.【點睛】本題考查的是用列表法或樹狀圖法求概率.注意樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;另外注意概率=所求情況數(shù)與總情況數(shù)之比.24、(1);(2),;(3)經過點的雙曲線的值不變.值為.【分析】(1)過點P作PE⊥BC于點E,依題意求得P、Q的坐標,進而求得PE、EQ的長,再利用勾股定理即可求得答案,由時間=距離速度可求得t的取值范圍;(2)當,即時,代入(1)求得的函數(shù)中,解方程即可求得答案;(3)過點作于點,求得OB的長,由,可求得,繼而求得OD的長,利用三角函數(shù)即可求得點D的坐標,利用反比例函數(shù)圖象上點的特征即可求得值.【詳解】(1)過點P作PE⊥BC于點E,如圖1:∵點B、C縱坐標相同,∴BC⊥y軸,∴四邊形OPEC為矩形,∵運動的時間為秒,∴,在中,,,,∴,即,點Q運動的時間最多為:(秒),點P運動的時間最多為:(秒),∴關于的函數(shù)解析式及的取值范圍為:;(2)當時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論