




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年海南省北師大萬寧附中數學高三上期末預測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.點是單位圓上不同的三點,線段與線段交于圓內一點M,若,則的最小值為()A. B. C. D.2.某人用隨機模擬的方法估計無理數的值,做法如下:首先在平面直角坐標系中,過點作軸的垂線與曲線相交于點,過作軸的垂線與軸相交于點(如圖),然后向矩形內投入粒豆子,并統計出這些豆子在曲線上方的有粒,則無理數的估計值是()A. B. C. D.3.中國古典樂器一般按“八音”分類.這是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為“金、石、土、革、絲、木、匏(páo)、竹”八音,其中“金、石、木、革”為打擊樂器,“土、匏、竹”為吹奏樂器,“絲”為彈撥樂器.現從“八音”中任取不同的“兩音”,則含有打擊樂器的概率為()A. B. C. D.4.網格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.45.若函數為自然對數的底數)在區間上不是單調函數,則實數的取值范圍是()A. B. C. D.6.已知函數,若,且,則的取值范圍為()A. B. C. D.7.如圖,平面與平面相交于,,,點,點,則下列敘述錯誤的是()A.直線與異面B.過只有唯一平面與平行C.過點只能作唯一平面與垂直D.過一定能作一平面與垂直8.若實數滿足不等式組,則的最大值為()A. B. C.3 D.29.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=010.已知底面是等腰直角三角形的三棱錐P-ABC的三視圖如圖所示,俯視圖中的兩個小三角形全等,則()A.PA,PB,PC兩兩垂直 B.三棱錐P-ABC的體積為C. D.三棱錐P-ABC的側面積為11.已知函數,則的最小值為()A. B. C. D.12.如圖是國家統計局公布的年入境游客(單位:萬人次)的變化情況,則下列結論錯誤的是()A.2014年我國入境游客萬人次最少B.后4年我國入境游客萬人次呈逐漸增加趨勢C.這6年我國入境游客萬人次的中位數大于13340萬人次D.前3年我國入境游客萬人次數據的方差小于后3年我國入境游客萬人次數據的方差二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,則_________.14.設隨機變量服從正態分布,若,則的值是______.15.已知直線與圓心為的圓相交于兩點,且,則實數的值為_________.16.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內切圓方程是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,、、分別是角、、的對邊,且.(1)求角的值;(2)若,且為銳角三角形,求的取值范圍.18.(12分)已知函數.(Ⅰ)解不等式;(Ⅱ)設其中為常數.若方程在上恰有兩個不相等的實數根,求實數的取值范圍.19.(12分)已知函數.(1)解不等式;(2)若函數存在零點,求的求值范圍.20.(12分)如圖,三棱柱中,與均為等腰直角三角形,,側面是菱形.(1)證明:平面平面;(2)求二面角的余弦值.21.(12分)選修4-4:坐標系與參數方程:在平面直角坐標系中,曲線:(為參數),在以平面直角坐標系的原點為極點、軸的正半軸為極軸,且與平面直角坐標系取相同單位長度的極坐標系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標方程;(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標.22.(10分)甲、乙、丙三名射擊運動員射中目標的概率分別為,三人各射擊一次,擊中目標的次數記為.(1)求的分布列及數學期望;(2)在概率(=0,1,2,3)中,若的值最大,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數量積的應用,考查基本不等式的應用,屬于中檔題.2、D【解析】
利用定積分計算出矩形中位于曲線上方區域的面積,進而利用幾何概型的概率公式得出關于的等式,解出的表達式即可.【詳解】在函數的解析式中,令,可得,則點,直線的方程為,矩形中位于曲線上方區域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點睛】本題考查利用隨機模擬的思想估算的值,考查了幾何概型概率公式的應用,同時也考查了利用定積分計算平面區域的面積,考查計算能力,屬于中等題.3、B【解析】
分別求得所有基本事件個數和滿足題意的基本事件個數,根據古典概型概率公式可求得結果.【詳解】從“八音”中任取不同的“兩音”共有種取法;“兩音”中含有打擊樂器的取法共有種取法;所求概率.故選:.【點睛】本題考查古典概型概率問題的求解,關鍵是能夠利用組合的知識求得基本事件總數和滿足題意的基本事件個數.4、A【解析】
采用數形結合,根據三視圖可知該幾何體為三棱錐,然后根據錐體體積公式,可得結果.【詳解】根據三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據三視圖刪掉沒有的點與線,屬中檔題.5、B【解析】
求得的導函數,由此構造函數,根據題意可知在上有變號零點.由此令,利用分離常數法結合換元法,求得的取值范圍.【詳解】,設,要使在區間上不是單調函數,即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導數研究函數的單調性,考查方程零點問題的求解策略,考查化歸與轉化的數學思想方法,屬于中檔題.6、A【解析】分析:作出函數的圖象,利用消元法轉化為關于的函數,構造函數求得函數的導數,利用導數研究函數的單調性與最值,即可得到結論.詳解:作出函數的圖象,如圖所示,若,且,則當時,得,即,則滿足,則,即,則,設,則,當,解得,當,解得,當時,函數取得最小值,當時,;當時,,所以,即的取值范圍是,故選A.點睛:本題主要考查了分段函數的應用,構造新函數,求解新函數的導數,利用導數研究新函數的單調性和最值是解答本題的關鍵,著重考查了轉化與化歸的數學思想方法,以及分析問題和解答問題的能力,試題有一定的難度,屬于中檔試題.7、D【解析】
根據異面直線的判定定理、定義和性質,結合線面垂直的關系,對選項中的命題判斷.【詳解】A.假設直線與共面,則A,D,B,C共面,則AB,CD共面,與,矛盾,故正確.B.根據異面直線的性質知,過只有唯一平面與平行,故正確.C.根據過一點有且只有一個平面與已知直線垂直知,故正確.D.根據異面直線的性質知,過不一定能作一平面與垂直,故錯誤.故選:D【點睛】本題主要考查異面直線的定義,性質以及線面關系,還考查了理解辨析的能力,屬于中檔題.8、C【解析】
作出可行域,直線目標函數對應的直線,平移該直線可得最優解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當過點時,取得最大值1.故選:C.【點睛】本題考查簡單的線性規劃問題,解題關鍵是作出可行域,本題要注意可行域不是一個封閉圖形.9、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉化成“1”即可求出漸進方程.屬于基礎題.10、C【解析】
根據三視圖,可得三棱錐P-ABC的直觀圖,然后再計算可得.【詳解】解:根據三視圖,可得三棱錐P-ABC的直觀圖如圖所示,其中D為AB的中點,底面ABC.所以三棱錐P-ABC的體積為,,,,,、不可能垂直,即不可能兩兩垂直,,.三棱錐P-ABC的側面積為.故正確的為C.故選:C.【點睛】本題考查三視圖還原直觀圖,以及三棱錐的表面積、體積的計算問題,屬于中檔題.11、C【解析】
利用三角恒等變換化簡三角函數為標準正弦型三角函數,即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點睛】本題考查利用降冪擴角公式、輔助角公式化簡三角函數,以及求三角函數的最值,屬綜合基礎題.12、D【解析】
ABD可通過統計圖直接分析得出結論,C可通過計算中位數判斷選項是否正確.【詳解】A.由統計圖可知:2014年入境游客萬人次最少,故正確;B.由統計圖可知:后4年我國入境游客萬人次呈逐漸增加趨勢,故正確;C.入境游客萬人次的中位數應為與的平均數,大于萬次,故正確;D.由統計圖可知:前年的入境游客萬人次相比于后年的波動更大,所以對應的方差更大,故錯誤.故選:D.【點睛】本題考查統計圖表信息的讀取以及對中位數和方差的理解,難度較易.處理問題的關鍵是能通過所給統計圖,分析出對應的信息,對學生分析問題的能力有一定要求.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先由題意得:,再利用向量數量積的幾何意義得,可得結果.【詳解】由知:,則在方向的投影為,由向量數量積的幾何意義得:,∴故答案為【點睛】本題考查了投影的應用,考查了數量積的幾何意義及向量的模的運算,屬于基礎題.14、1【解析】
由題得,解不等式得解.【詳解】因為,所以,所以c=1.故答案為1【點睛】本題主要考查正態分布的圖像和性質,意在考查學生對該知識的理解掌握水平和分析推理能力.15、0或6【解析】
計算得到圓心,半徑,根據得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點睛】本題考查了根據直線和圓的位置關系求參數,意在考查學生的計算能力和轉化能力。16、【解析】
利用公式計算出,其中為的周長,為內切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設內切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學生的運算能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】
(1)根據題意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等變換的公式,化簡得到,再根據為銳角三角形,求得,利用三角函數的圖象與性質,即可求解.【詳解】(1)由題意知,∴,由余弦定理可知,,又∵,∴.(2)由正弦定理可知,,即∴,又∵為銳角三角形,∴,即,則,所以,綜上的取值范圍為.【點睛】本題主要考查了利用正弦定理和三角函數的恒等變換求解三角形問題,對于解三角形問題,通常利用正弦定理進行“邊轉角”尋求角的關系,利用“角轉邊”尋求邊的關系,利用余弦定理借助三邊關系求角,利用兩角和差公式及二倍角公式求三角函數值.利用正、余弦定理解三角形問題是高考高頻考點,經常利用三角形內角和定理,三角形面積公式,結合正、余弦定理解題.18、(Ⅰ);(Ⅱ).【解析】
(I)零點分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當時,化簡得.解得;當時,化簡得.此時無解;當時,化簡得.解得.綜上,原不等式的解集為由題意,設方程兩根為.當時,方程等價于方程.易知當,方程在上有兩個不相等的實數根.此時方程在上無解.滿足條件.當時,方程等價于方程,此時方程在上顯然沒有兩個不相等的實數根.當時,易知當,方程在上有且只有一個實數根.此時方程在上也有一個實數根.滿足條件.綜上,實數的取值范圍為.【點睛】本題考查解絕對值不等式以及方程根的個數求參數范圍,考查學生的運算能力,是一道中檔題.19、(1)或;(2).【解析】
(1)通過討論的范圍,將絕對值符號去掉,轉化為求不等式組的解集,之后取并集,得到原不等式的解集;(2)將函數零點問題轉化為曲線交點問題解決,數形結合得到結果.【詳解】(1)有題不等式可化為,當時,原不等式可化為,解得;當時,原不等式可化為,解得,不滿足,舍去;當時,原不等式可化為,解得,所以不等式的解集為.(2)因為,所以若函數存在零點則可轉化為函數與的圖像存在交點,函數在上單調增,在上單調遞減,且.數形結合可知.【點睛】該題考查的是有關不等式的問題,涉及到的知識點有分類討論求絕對值不等式的解集,將零點問題轉化為曲線交點的問題來解決,數形結合思想的應用,屬于簡單題目.20、(1)見解析(2)【解析】
(1)取中點,連接,,通過證明,得,結合可證線面垂直,繼而可證面面垂直.(2)設,建立空間直角坐標系,求出平面和平面的法向量,繼而可求二面角的余弦值.【詳解】解析:(1)取中點,連接,,由已知可得,,,∵側面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)設,則,建立如圖所示空間直角坐標系,則,,,,,,,,設平面的法向量為,則,令得.同理可求得平面的法向量,∴.【點睛】本題考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者線面角的問題時,常建立空間直角坐標系,通過求面的法向量、線的方向向量,繼而求解.特別地,對于線面角問題,法向量與方向向量的余角才是所求的線面角,即兩個向量夾角的余弦值為線面角的正弦值.21、(1),;(2),,.【解析】
(1)把曲線的參數方程與曲線的極坐標方程分別轉化為直角坐標方程;(2)利用圖象求出三個點的極徑與極角.【詳解】解:(1)由消去參數
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 室外健身點管理制度
- 家政員薪酬管理制度
- 應加強合同管理制度
- 張掖市保潔管理制度
- 往來帳對帳管理制度
- 微商城銷售管理制度
- 快遞寄存點管理制度
- 怎樣編考勤管理制度
- 總醫院績效管理制度
- 總裁辦績效管理制度
- GB/T 44198-2024空間站科學實驗系統集成與驗證要求
- 中考物理最后一課
- 2024年四川省涼山州“千名英才.智匯涼山”行動第二批引才395人歷年(高頻重點復習提升訓練)共500題附帶答案詳解
- 安徽省馬鞍山市2024-2025學年高一數學下學期期末考試試題含解析
- 【解決方案】動力環境監控系統【動環監控】
- 勞務班組施工合同范本(2024版)
- 四川省眉山市2023-2024學年高一下學期期末考試英語試題(無答案)
- 北京市西城區2023-2024學年五年級下學期期末數學試卷
- 湖南建筑工程定額
- 四川省成都天府新區2024年八年級下學期末物理試題附答案
- (完整版)增值稅申報表帶公式模板
評論
0/150
提交評論