




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省福清市華僑中學2024屆高二數學第一學期期末監測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在直三棱柱中,,,E是的中點,則直線BC與平面所成角的正弦值為()A. B.C. D.2.某次生物實驗6個小組的耗材質量(單位:千克)分別為1.71,1.58,1.63,1.43,1.85,1.67,則這組數據的中位數是()A.1.63 B.1.67C.1.64 D.1.653.已知函數在區間上是增函數,則實數的取值范圍是()A. B.C. D.4.直線的傾斜角的大小為()A. B.C. D.5.命題:,否定是()A., B.,C., D.,6.已知等差數列,,,則數列的前項和為()A. B.C. D.7.將直線繞著原點逆時針旋轉,得到新直線的斜率是()A. B.C. D.8.如圖,奧運五環由5個奧林匹克環套接組成,環從左到右互相套接,上面是藍、黑、紅環,下面是黃,綠環,整個造形為一個底部小的規則梯形.為迎接北京冬奧會召開,某機構定制一批奧運五環旗,已知該五環旗的5個奧林匹克環的內圈半徑為1,外圈半徑為1.2,相鄰圓環圓心水平距離為2.6,兩排圓環圓心垂直距離為1.1,則相鄰兩個相交的圓的圓心之間的距離為()A. B.2.8C. D.2.99.已知f(x)=x3+(a-1)x2+x+1沒有極值,則實數a的取值范圍是()A.[0,1] B.(-∞,0]∪[1,+∞)C.[0,2] D.(-∞,0]∪[2,+∞)10.經過點作圓的弦,使點為弦的中點,則弦所在直線的方程為A. B.C. D.11.若直線的方向向量為,平面的法向量為,則()A. B.C. D.與相交但不垂直12.等差數列中,,,則()A.6 B.7C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.經過點作直線,直線與連接兩點線段總有公共點,則直線的斜率的取值范圍是________14.某部門計劃對某路段進行限速,為調查限速60km/h是否合理,對通過該路段的300輛汽車的車速進行檢測,將所得數據按,,,分組,繪制成如圖所示頻率分布直方圖.則________;這300輛汽車中車速低于限速60km/h的汽車有______輛.15.設為三角形的一個內角,已知曲線:,則可能是___________.(寫出不同曲線的名稱,盡可能多.注:在一些問題情景中,直線可以理解成是特殊的曲線)16.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個共同的焦點F,兩曲線的一個交點為P,若|FP|=5,則點F到雙曲線的漸近線的距離為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)籃天技校為了了解車床班學生的操作能力,設計了一個考查方案;每個考生從道備選題中一次性隨機抽取道題,按照題目要求獨立完成零件加工,規定:至少正確加工完成其中個零件方可通過.道備選題中,考生甲有個零件能正確加工完成,個零件不能完成;考生乙每個零件正確完成的概率都是,且每個零件正確加工完成與否互不影響(1)分別求甲、乙兩位考生正確加工完成零件數的概率分布列(列出分布列表);(2)試從甲、乙兩位考生正確加工完成零件數的數學期望及兩人通過考查的概率分析比較兩位考生的操作能力18.(12分)已知橢圓過點,且離心率(1)求橢圓的方程;(2)設點為橢圓的左焦點,點,過點作的垂線交橢圓于點,,連接與交于點①若,求;②求的值19.(12分)已知圓:,定點,A是圓上的一動點,線段的垂直平分線交半徑于P點(1)求P點的軌跡C的方程;(2)設直線過點且與曲線C相交于M,N兩點,不經過點.證明:直線MQ的斜率與直線NQ的斜率之和為定值20.(12分)如圖1是一張長方形鐵片,,,,分別是,中點,,分別在邊,上,且,將它卷成一個圓柱的側面圖2,使與重合,與重合.(1)求證:平面;(2)求幾何體的體積.21.(12分)已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為6.(1)求拋物線的方程;(2)若不過原點的直線與拋物線交于A、B兩點,且,求證:直線過定點并求出定點坐標.22.(10分)已知拋物線C的頂點在坐標原點,焦點在x軸上,點在拋物線C上(1)求拋物線C的方程;(2)過拋物線C焦點F的直線l交拋物線于P,Q兩點,若求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】以,,的方向分別為x軸、y軸、z軸的正方向,建立空間直角坐標系,利用向量法即可求出答案.【詳解】解:由題意知,CA,CB,CC1兩兩垂直,以,,的方向分別為x軸、y軸、z軸的正方向,建立如圖所示的空間直角坐標系,則,,,,設平面的法向量為,則令,得.因為,所以,故直線BC與平面所成角的正弦值為.故選:D.2、D【解析】將已有數據從小到大排序,根據中位數的定義確定該組數據的中位數.【詳解】由題設,將數據從小到大排序可得:,∴中位數為.故選:D.3、D【解析】由在上恒成立,再轉化為求函數的取值范圍可得【詳解】由已知,在上是增函數,則在上恒成立,即,,當時,,所以故選:D4、B【解析】由直線方程,可知直線的斜率,設直線的傾斜角為,則,又,所以,故選5、D【解析】根據給定條件利用全稱量詞命題的否定是存在量詞命題直接寫出作答.【詳解】命題:,是全稱量詞命題,其否定是存在量詞命題,所以命題:,的否定是:,.故選:D6、A【解析】求出通項,利用裂項相消法求數列的前n項和.【詳解】因為等差數列,,,所以,所以,所以數列的前項和為故B,C,D錯誤.故選:A.7、B【解析】由題意知直線的斜率為,設其傾斜角為,將直線繞著原點逆時針旋轉,得到新直線的斜率為,化簡求值即可得到答案.【詳解】由知斜率為,設其傾斜角為,則,將直線繞著原點逆時針旋轉,則故新直線的斜率是.故選:B.8、C【解析】根據題意作出輔助線直接求解即可.【詳解】如圖所示,由題意可知,在中,取的中點,連接,所以,,又因為,所以,所以即相鄰兩個相交的圓的圓心之間的距離為.故選:C9、C【解析】求導得,再解不等式即得解.【詳解】由得,根據題意得,解得故選:C10、A【解析】由題知為弦AB的中點,可得直線與過圓心和點的直線垂直,可求的斜率,然后用點斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點睛】本題考查直線與圓的位置關系,直線的斜率,直線的點斜式方程,屬于基礎題11、B【解析】通過判斷直線的方向向量與平面的法向量的關系,可得結論【詳解】因為,,所以,所以∥,因為直線的方向向量為,平面的法向量為,所以,故選:B12、C【解析】由等差數列的基本量法先求得公差,然后可得【詳解】設數列的公差為,則,,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出的斜率,結合圖形可得結論【詳解】,,而,因此,故答案為:14、①.②.【解析】根據個小矩形面積之和為1即可求出的值;根據頻率分布直方圖可以求出車速低于限速60km/h的頻率,從而可求出汽車有多少輛【詳解】由解得:這300輛汽車中車速低于限速60km/h的汽車有故答案為:;15、焦點在軸上的橢圓,焦點在軸上的雙曲線,兩條直線.【解析】討論,和三種情況,進而根據曲線方程的特征得到答案.【詳解】若,則曲線:,而,曲線表示焦點在y軸上的橢圓;若,則曲線:或,曲線表示兩條直線;若,則曲線:,而,曲線表示焦點在x軸上的雙曲線.故答案為:焦點在y軸上橢圓,焦點在x軸上的雙曲線,兩條直線.16、【解析】設點為,由拋物線定義知,,求出點P坐標代入雙曲線方程得到的關系式,求出雙曲線的漸近線方程,利用點到直線的距離公式求解即可.【詳解】由題意得F(2,0),因為點P在拋物線y2=8x上,|FP|=5,設點為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因為a2+b2=4,解得a=1,b=,因為雙曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點到直線的距離公式可得,點F到雙曲線的漸近線的距離.故答案為:【點睛】本題考查雙曲線和拋物線方程及其幾何性質;考查運算求解能力和知識遷移能力;靈活運用雙曲線和拋物線的性質是求解本題的關鍵;屬于中檔題、常考題型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)分布列見解析(2)甲的試驗操作能力較強,理由見解析【解析】(1)設考生甲、乙正確加工完成零件的個數分別為、,則的可能取值有、、,的可能取值有、、、,且,計算出兩個隨機變量在不同取值下的概率,可得出這兩個隨機變量的概率分布列;(2)計算出、、、的值,比較、的大小,以及、的大小,由此可得出結論.【小問1詳解】解:設考生甲、乙正確加工完成零件的個數分別為、,則的可能取值有、、,的可能取值有、、、,且,,,,所以,考生甲正確加工完成零件數的概率分布列如下表所示:,,,,所以,考生乙正確加工完成零件數的概率分布列如下表所示:【小問2詳解】解:,,,,所以,,從做對題的數學期望分析,兩人水平相當;從通過考查的概率分析,甲通過的可能性大,因此可以判斷甲的試驗操作能力較強.18、(1)(2)①,②【解析】(1)由題意得解方程組求出,從而可得橢圓的方程,(2)①由題意可得的方程為,再與橢圓方程聯立,解方程組求出的坐標,從而可求出;②當時,,當時,直線方程為,與橢圓方程聯立,消去,利用根與系數的關系,結合中點坐標公式可得中點的坐標,再將直線的方程與方程聯立,求出點的坐標,從而可求出的值【小問1詳解】由題意得解得,所以橢圓的方程為.【小問2詳解】①當時,直線的斜率,則的垂線的方程為由得解得故,,②由,,顯然斜率存在,,當時,當時,直線過點且與直線垂直,則直線方程為由得顯然設,,則,則中點直線的方程為,由得所以綜上的值為19、(1);(2)證明見解析,定值為-1.【解析】(1)根據給定條件探求出,再利用橢圓定義即可得軌跡C的方程.(2)由給定條件可得直線的斜率k存在且不為0,寫出直線的方程,再聯立軌跡C的方程,借助韋達定理計算作答.【小問1詳解】圓:的圓心,半徑為8,因A是圓上一動點,線段的垂直平分線交半徑于P點,則,于是得,因此,P點的軌跡C是以,為左右焦點,長軸長2a=8的橢圓,短半軸長b有,所以P點的軌跡C的方程是.【小問2詳解】因直線過點且與曲線C:相交于M,N兩點,則直線的斜率存在且不為0,又不經過點,即直線的斜率不等于-1,設直線的斜率為k,且,直線的方程為:,即,由消去y并整理得:,,即,則有且,設,則,直線MQ的斜率,直線NQ的斜率,,所以直線MQ的斜率與直線NQ的斜率之和為定值.20、(1)證明見解析.(2).【解析】(1)根據線面垂直的性質和判定可得證;(2)作圓柱的母線,由平面幾何知識可得四邊形為平行四邊形,利用等體積法可求得,由幾何體的體積,可求得答案.【小問1詳解】證明:∵是直徑,∴,∵平面,平面,∴,∵平面,平面,,∴平面;【小問2詳解】如圖,作圓柱的母線,則,且,∴四邊形是平行四邊形,∴,且①又依題知,,,為底面圓的四等分點,∴,且②由①②知四邊形為平行四邊形,得,且,∴,∵到面的距離為,∴,所以幾何體的體積.21、(1)(2)證明見解析,定點坐標為(8,0).【解析】(1)根據拋物線的定義,即可求出結果;(2)由題意直線方程可設為,將其與拋物線方程聯立,再將轉化為,根據韋達定理,化簡求解,即可求出定點.【小問1詳解】解:拋物線的頂點在原點,焦點在軸上,且拋物線上有一點,設拋物線的方程為,到焦點的距離為6,即有點到準線的距離為6,即解得,即拋物線的標準方程為;【小問2詳解】證明:由題意知直線不能與軸平行,故直線方程可設為,與拋物線聯立得,消去得,設,則,則,,由,可得,所以,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設計材料代用管理制度
- 診所內科門診管理制度
- 診所藥品進貨管理制度
- 試用員工流程管理制度
- 財務績效考核管理制度
- 財政水利資金管理制度
- 貨物電梯設備管理制度
- 貨運物流公司管理制度
- 2025年中國互聯力量訓練器材行業市場全景分析及前景機遇研判報告
- 2025年中國催化加熱器行業市場全景分析及前景機遇研判報告
- 《管理會計》說課及試講
- 二手農機買賣合同協議書
- 2024年大學試題(宗教學)-伊斯蘭教文化筆試考試歷年典型考題及考點含含答案
- 植筋、界面處理檢驗批質量驗收記錄表
- 機床安全 壓力機 第 2 部分:機械壓力機安全要求
- 住院醫師規范化培訓臨床小講課的設計與實施培訓課件
- 多圖中華民族共同體概論課件第十三講先鋒隊與中華民族獨立解放(1919-1949)根據高等教育出版社教材制作
- JJF 1101-2019 環境試驗設備溫度、濕度參數校準規范
- 2024年陜西省政工師理論知識考試參考題庫(含答案)
- 化工工程基礎知識培訓課件
- 市政道路工程技術標
評論
0/150
提交評論