浙江省金華市六校聯誼2022-2023學年中考二模數學試題含解析_第1頁
浙江省金華市六校聯誼2022-2023學年中考二模數學試題含解析_第2頁
浙江省金華市六校聯誼2022-2023學年中考二模數學試題含解析_第3頁
浙江省金華市六校聯誼2022-2023學年中考二模數學試題含解析_第4頁
浙江省金華市六校聯誼2022-2023學年中考二模數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,比例規是一種畫圖工具,它由長度相等的兩腳AC和BD交叉構成,利用它可以把線段按一定的比例伸長或縮短.如果把比例規的兩腳合上,使螺絲釘固定在刻度3的地方(即同時使OA=3OC,OB=3OD),然后張開兩腳,使A,B兩個尖端分別在線段a的兩個端點上,當CD=1.8cm時,則AB的長為()A.7.2cm B.5.4cm C.3.6cm D.0.6cm2.某共享單車前a公里1元,超過a公里的,每公里2元,若要使使用該共享單車50%的人只花1元錢,a應該要取什么數()A.平均數B.中位數C.眾數D.方差3.如圖,正六邊形ABCDEF內接于⊙O,半徑為4,則這個正六邊形的邊心距OM的長為()A.2 B.2 C. D.44.下列運算正確的是()A.6-3=3B.-32=﹣3C.a?a2=a2D.(2a5.如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60nmile的A處,它沿正北方向航行一段時間后,到達位于燈塔P的北偏東30°方向上的B處,這時,B處與燈塔P的距離為()A.60nmile B.60nmile C.30nmile D.30nmile6.如圖,平行于x軸的直線與函數,的圖象分別相交于A,B兩點,點A在點B的右側,C為x軸上的一個動點,若的面積為4,則的值為A.8 B. C.4 D.7.哥哥與弟弟的年齡和是18歲,弟弟對哥哥說:“當我的年齡是你現在年齡的時候,你就是18歲”.如果現在弟弟的年齡是x歲,哥哥的年齡是y歲,下列方程組正確的是()A.x=y-18y-x=18-yB.C.x+y=18y-x=18+yD.8.在△ABC中,∠C=90°,,那么∠B的度數為()A.60° B.45° C.30° D.30°或60°9.在同一平面直角坐標系中,函數y=x+k與(k為常數,k≠0)的圖象大致是()A. B.C. D.10.如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在點A下方,點E是邊長為2、中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉一周,在此過程中DE的最小值為()A.3 B.4﹣ C.4 D.6﹣2二、填空題(本大題共6個小題,每小題3分,共18分)11.已知x1,x2是方程x2-3x-1=0的兩根,則=______.12.有4根細木棒,長度分別為2cm、3cm、4cm、5cm,從中任選3根,恰好能搭成一個三角形的概率是__________.13.如圖,點P(3a,a)是反比例函(k>0)與⊙O的一個交點,圖中陰影部分的面積為10π,則反比例函數的表達式為______.14.如圖是一個幾何體的三視圖,若這個幾何體的體積是36,則它的表面積是_______.15.如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1,),則點C的坐標為_____.16.已知拋物線開口向上且經過點,雙曲線經過點,給出下列結論:;;,c是關于x的一元二次方程的兩個實數根;其中正確結論是______填寫序號三、解答題(共8題,共72分)17.(8分)已知:如圖,在半徑為2的扇形中,°,點C在半徑OB上,AC的垂直平分線交OA于點D,交弧AB于點E,聯結.(1)若C是半徑OB中點,求的正弦值;(2)若E是弧AB的中點,求證:;(3)聯結CE,當△DCE是以CD為腰的等腰三角形時,求CD的長.18.(8分)如圖,△ABC中,點D在邊AB上,滿足∠ACD=∠ABC,若AC=,AD=1,求DB的長.19.(8分).在一個不透明的布袋中裝有三個小球,小球上分別標有數字﹣1、0、2,它們除了數字不同外,其他都完全相同.(1)隨機地從布袋中摸出一個小球,則摸出的球為標有數字2的小球的概率為;(2)小麗先從布袋中隨機摸出一個小球,記下數字作為平面直角坐標系內點M的橫坐標.再將此球放回、攪勻,然后由小華再從布袋中隨機摸出一個小球,記下數字作為平面直角坐標系內點M的縱坐標,請用樹狀圖或表格列出點M所有可能的坐標,并求出點M落在如圖所示的正方形網格內(包括邊界)的概率.20.(8分)2015年1月,市教育局在全市中小學中選取了63所學校從學生的思想品德、學業水平、學業負擔、身心發展和興趣特長五個維度進行了綜合評價.評價小組在選取的某中學七年級全體學生中隨機抽取了若干名學生進行問卷調查,了解他們每天在課外用于學習的時間,并繪制成如下不完整的統計圖.根據上述信息,解答下列問題:(1)本次抽取的學生人數是______;扇形統計圖中的圓心角α等于______;補全統計直方圖;(2)被抽取的學生還要進行一次50米跑測試,每5人一組進行.在隨機分組時,小紅、小花兩名女生被分到同一個小組,請用列表法或畫樹狀圖求出她倆在抽道次時抽在相鄰兩道的概率.21.(8分)某汽車銷售公司6月份銷售某廠家的汽車,在一定范圍內,每部汽車的進價與銷售有如下關系,若當月僅售出1部汽車,則該部汽車的進價為27萬元,每多售一部,所有出售的汽車的進價均降低0.1萬元/部.月底廠家根據銷售量一次性返利給銷售公司,銷售量在10部以內,含10部,每部返利0.5萬元,銷售量在10部以上,每部返利1萬元.①若該公司當月賣出3部汽車,則每部汽車的進價為萬元;②如果汽車的銷售價位28萬元/部,該公司計劃當月盈利12萬元,那么要賣出多少部汽車?(盈利=銷售利潤+返利)22.(10分)某自動化車間計劃生產480個零件,當生產任務完成一半時,停止生產進行自動化程序軟件升級,用時20分鐘,恢復生產后工作效率比原來提高了,結果完成任務時比原計劃提前了40分鐘,求軟件升級后每小時生產多少個零件?23.(12分)解方程:24.如圖,四邊形ABCD的外接圓為⊙O,AD是⊙O的直徑,過點B作⊙O的切線,交DA的延長線于點E,連接BD,且∠E=∠DBC.(1)求證:DB平分∠ADC;(2)若EB=10,CD=9,tan∠ABE=,求⊙O的半徑.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】【分析】由已知可證△ABO∽CDO,故,即.【詳解】由已知可得,△ABO∽CDO,所以,,所以,,所以,AB=5.4故選B【點睛】本題考核知識點:相似三角形.解題關鍵點:熟記相似三角形的判定和性質.2、B【解析】解:根據中位數的意義,故只要知道中位數就可以了.故選B.3、B【解析】分析:連接OC、OB,證出△BOC是等邊三角形,根據銳角三角函數的定義求解即可.詳解:如圖所示,連接OC、OB

∵多邊形ABCDEF是正六邊形,∴∠BOC=60°,∵OC=OB,∴△BOC是等邊三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×=2.故選B.點睛:考查的是正六邊形的性質、等邊三角形的判定與性質、三角函數;熟練掌握正六邊形的性質,由三角函數求出OM是解決問題的關鍵.4、D【解析】試題解析:A.6與3不是同類二次根式,不能合并,故該選項錯誤;B.(-3)2C.a?aD.(2a故選D.5、B【解析】

如圖,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60nmile,∴PE=AE=×60=nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=nmile.故選B.6、A【解析】【分析】設,,根據反比例函數圖象上點的坐標特征得出,根據三角形的面積公式得到,即可求出.【詳解】軸,,B兩點縱坐標相同,設,,則,,,,故選A.【點睛】本題考查了反比例函數圖象上點的坐標特征,三角形的面積,熟知點在函數的圖象上,則點的坐標滿足函數的解析式是解題的關鍵.7、D【解析】試題解析:設現在弟弟的年齡是x歲,哥哥的年齡是y歲,由題意得y=18-x18-y=y-x故選D.考點:由實際問題抽象出二元一次方程組8、C【解析】

根據特殊角的三角函數值可知∠A=60°,再根據直角三角形中兩銳角互余求出∠B的值即可.【詳解】解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.點睛:本題考查了特殊角的三角函數值和直角三角形中兩銳角互余的性質,熟記特殊角的三角函數值是解答本題的突破點.9、B【解析】

選項A中,由一次函數y=x+k的圖象知k<0,由反比例函數y=的圖象知k>0,矛盾,所以選項A錯誤;選項B中,由一次函數y=x+k的圖象知k>0,由反比例函數y=的圖象知k>0,正確,所以選項B正確;由一次函數y=x+k的圖象知,函數圖象從左到右上升,所以選項C、D錯誤.故選B.10、B【解析】分析:首先得到當點E旋轉至y軸上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長即可.詳解:如圖,當點E旋轉至y軸上時DE最小;∵△ABC是等邊三角形,D為BC的中點,∴AD⊥BC∵AB=BC=2∴AD=AB?sin∠B=,∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點A的坐標為(0,6)∴OA=6∴DE′=OA-AD-OE′=4-故選B.點睛:本題考查了正多邊形的計算及等邊三角形的性質,解題的關鍵是從圖形中整理出直角三角形.二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣1.【解析】試題解析:∵,是方程的兩根,∴、,∴===﹣1.故答案為﹣1.12、【解析】

根據題意,使用列舉法可得從有4根細木棒中任取3根的總共情況數目以及能搭成一個三角形的情況數目,根據概率的計算方法,計算可得答案.【詳解】根據題意,從有4根細木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4種取法,而能搭成一個三角形的有2、3、4;3、4、5,2、4、5,三種,得P=.故其概率為:.【點睛】本題考查概率的計算方法,使用列舉法解題時,注意按一定順序,做到不重不漏.用到的知識點為:概率=所求情況數與總情況數之比.13、y=【解析】設圓的半徑是r,根據圓的對稱性以及反比例函數的對稱性可得:πr2=10π解得:r=.∵點P(3a,a)是反比例函y=(k>0)與O的一個交點,∴3a2=k.∴a2==4.∴k=3×4=12,則反比例函數的解析式是:y=.故答案是:y=.點睛:本題主要考查了反比例函數圖象的對稱性,正確根據對稱性求得圓的半徑是解題的關鍵.14、2【解析】分析:∵由主視圖得出長方體的長是6,寬是2,這個幾何體的體積是16,∴設高為h,則6×2×h=16,解得:h=1.∴它的表面積是:2×1×2+2×6×2+1×6×2=2.15、(﹣,1)【解析】如圖作AF⊥x軸于F,CE⊥x軸于E.∵四邊形ABCD是正方形,∴OA=OC,∠AOC=90°,∵∠COE+∠AOF=90°,∠AOF+∠OAF=90°,∴∠COE=∠OAF,在△COE和△OAF中,,∴△COE≌△OAF,∴CE=OF,OE=AF,∵A(1,),∴CE=OF=1,OE=AF=,∴點C坐標(﹣,1),故答案為(,1).點睛:本題考查正方形的性質、全等三角形的判定和性質等知識,坐標與圖形的性質,解題的關鍵是學會添加常用的輔助線,構造全等三角形解決問題,屬于中考常考題型.注意:距離都是非負數,而坐標可以是負數,在由距離求坐標時,需要加上恰當的符號.16、①③【解析】試題解析:∵拋物線開口向上且經過點(1,1),雙曲線經過點(a,bc),∴,∴bc>0,故①正確;∴a>1時,則b、c均小于0,此時b+c<0,當a=1時,b+c=0,則與題意矛盾,當0<a<1時,則b、c均大于0,此時b+c>0,故②錯誤;∴可以轉化為:,得x=b或x=c,故③正確;∵b,c是關于x的一元二次方程的兩個實數根,∴a﹣b﹣c=a﹣(b+c)=a+(a﹣1)=2a﹣1,當a>1時,2a﹣1>3,當0<a<1時,﹣1<2a﹣1<3,故④錯誤;故答案為①③.三、解答題(共8題,共72分)17、(2);(2)詳見解析;(2)當是以CD為腰的等腰三角形時,CD的長為2或.【解析】

(2)先求出OCOB=2,設OD=x,得出CD=AD=OA﹣OD=2﹣x,根據勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結論;(2)先判斷出,進而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結論;(3)分兩種情況:①當CD=CE時,判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②當CD=DE時,判斷出∠DAE=∠DEA,再判斷出∠OAE=OEA,進而得出∠DEA=∠OEA,即:點D和點O重合,即可得出結論.【詳解】(2)∵C是半徑OB中點,∴OCOB=2.∵DE是AC的垂直平分線,∴AD=CD.設OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根據勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;(2)如圖2,連接AE,CE.∵DE是AC垂直平分線,∴AE=CE.∵E是弧AB的中點,∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.連接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO?BC;(3)△DCE是以CD為腰的等腰三角形,分兩種情況討論:①當CD=CE時.∵DE是AC的垂直平分線,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四邊形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,設菱形的邊長為a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;②當CD=DE時.∵DE是AC垂直平分線,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.連接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴點D和點O重合,此時,點C和點B重合,∴CD=2.綜上所述:當△DCE是以CD為腰的等腰三角形時,CD的長為2或.【點睛】本題是圓的綜合題,主要考查了勾股定理,線段垂直平分線的性質,菱形的判定和性質,銳角三角函數,作出輔助線是解答本題的關鍵.18、BD=2.【解析】

試題分析:根據∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性質得出AB的長,從而求出DB的長.試題解析:∵∠ACD=∠ABC,又∵∠A=∠A,∴△ABC∽△ACD,∴,∵AC=,AD=1,∴,∴AB=3,∴BD=AB﹣AD=3﹣1=2.點睛:本題主要考查了相似三角形的判定以及相似三角形的性質,利用相似三角形的性質求出AB的長是解題關鍵.19、(1);(2)列表見解析,.【解析】試題分析:(1)一共有3種等可能的結果總數,摸出標有數字2的小球有1種可能,因此摸出的球為標有數字2的小球的概率為;(2)利用列表得出共有9種等可能的結果數,再找出點M落在如圖所示的正方形網格內(包括邊界)的結果數,可求得結果.試題解析:(1)P(摸出的球為標有數字2的小球)=;(2)列表如下:小華

小麗

-1

0

2

-1

(-1,-1)

(-1,0)

(-1,2)

0

(0,-1)

(0,0)

(0,2)

2

(2,-1)

(2,0)

(2,2)

共有9種等可能的結果數,其中點M落在如圖所示的正方形網格內(包括邊界)的結果數為6,∴P(點M落在如圖所示的正方形網格內)==.考點:1列表或樹狀圖求概率;2平面直角坐標系.20、(1)30;;(2).【解析】試題分析:(1)根據題意列式求值,根據相應數據畫圖即可;(2)根據題意列表,然后根據表中數據求出概率即可.解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的學生人數是30人;扇形統計圖中的圓心角α等于144°;故答案為30,144°;補全統計圖如圖所示:(2)根據題意列表如下:設豎列為小紅抽取的跑道,橫排為小花抽取的跑道,記小紅和小花抽在相鄰兩道這個事件為A,∴.考點:列表法與樹狀圖法;扇形統計圖;利用頻率估計概率.21、解:(1)22.1.(2)設需要售出x部汽車,由題意可知,每部汽車的銷售利潤為:21-[27-0.1(x-1)]=(0.1x+0.9)(萬元),當0≤x≤10,根據題意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,解這個方程,得x1=-20(不合題意,舍去),x2=2.當x>10時,根據題意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解這個方程,得x1=-24(不合題意,舍去),x2=3.∵3<10,∴x2=3舍去.答:要賣出2部汽車.【解析】一元二次方程的應用.(1)根據若當月僅售出1部汽車,則該部汽車的進價為27萬元,每多售出1部,所有售出的汽車的進價均降低0.1萬元/部,得出該公司當月售出3部汽車時,則每部汽車的進價為:27-0.1×2=22.1.,(2)利用設需要售出x部汽車,由題意可知,每部汽車的銷售利潤,根據當0≤x≤10,以及當x>10時,分別討論得出即可.22、軟件升級后每小時生產1個零件.【解析】分析:設軟

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論