湖北省恩施州2023屆中考試題猜想數學試卷含解析_第1頁
湖北省恩施州2023屆中考試題猜想數學試卷含解析_第2頁
湖北省恩施州2023屆中考試題猜想數學試卷含解析_第3頁
湖北省恩施州2023屆中考試題猜想數學試卷含解析_第4頁
湖北省恩施州2023屆中考試題猜想數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.我國古代數學著作《孫子算經》中有“多人共車”問題:今有三人共車,二車空;二人共車,九人步.問人與車各幾何?其大意是:每車坐3人,兩車空出來;每車坐2人,多出9人無車坐.問人數和車數各多少?設車輛,根據題意,可列出的方程是().A. B.C. D.2.某學習小組做“用頻率估計概率”的實驗時,統計了某一結果出現的頻率,繪制了如下折線統計圖,則符合這一結果的實驗最有可能的是()A.袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球B.擲一枚質地均勻的正六面體骰子,向上的面的點數是偶數C.先后兩次擲一枚質地均勻的硬幣,兩次都出現反面D.先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數之和是7或超過93.如圖,將一塊含有30°角的直角三角板的兩個頂點放在長方形直尺的一組對邊上,如果∠1=30°,那么∠2的度數為()A.30° B.40° C.50° D.60°4.如圖,在⊙O中,直徑CD⊥弦AB,則下列結論中正確的是A.AC=AB B.∠C=∠BOD C.∠C=∠B D.∠A=∠B0D5.正方形ABCD在直角坐標系中的位置如圖所示,將正方形ABCD繞點A按順時針方向旋轉180°后,C點的坐標是()A.(2,0) B.(3,0) C.(2,-1) D.(2,1)6.如圖,△ABC中,∠CAB=65°,在同一平面內,將△ABC繞點A旋轉到△AED的位置,使得DC∥AB,則∠BAE等于()A.30° B.40° C.50° D.60°7.已知⊙O及⊙O外一點P,過點P作出⊙O的一條切線(只有圓規和三角板這兩種工具),以下是甲、乙兩同學的作業:甲:①連接OP,作OP的垂直平分線l,交OP于點A;②以點A為圓心、OA為半徑畫弧、交⊙O于點M;③作直線PM,則直線PM即為所求(如圖1).乙:①讓直角三角板的一條直角邊始終經過點P;②調整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點落在⊙O上,記這時直角頂點的位置為點M;③作直線PM,則直線PM即為所求(如圖2).對于兩人的作業,下列說法正確的是()A.甲乙都對 B.甲乙都不對C.甲對,乙不對 D.甲不對,已對8.如圖,比例規是一種畫圖工具,它由長度相等的兩腳AC和BD交叉構成,利用它可以把線段按一定的比例伸長或縮短.如果把比例規的兩腳合上,使螺絲釘固定在刻度3的地方(即同時使OA=3OC,OB=3OD),然后張開兩腳,使A,B兩個尖端分別在線段a的兩個端點上,當CD=1.8cm時,則AB的長為()A.7.2cm B.5.4cm C.3.6cm D.0.6cm9.已知A(,),B(2,)兩點在雙曲線上,且,則m的取值范圍是()A. B. C. D.10.一組數據8,3,8,6,7,8,7的眾數和中位數分別是()A.8,6B.7,6C.7,8D.8,7二、填空題(本大題共6個小題,每小題3分,共18分)11.已知一個正多邊形的內角和是外角和的3倍,那么這個正多邊形的每個內角是_____度.12.如圖,AE是正八邊形ABCDEFGH的一條對角線,則∠BAE=°.13.如圖,正方形ABCD的邊長為,點E在對角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為點F,則EF的長是__________.14.的算術平方根為______.15.如圖,在四邊形ABCD中,,AC、BD相交于點E,若,則______.16.甲乙兩人8次射擊的成績如圖所示(單位:環)根據圖中的信息判斷,這8次射擊中成績比較穩定的是______(填“甲”或“乙”)三、解答題(共8題,共72分)17.(8分)解不等式:﹣≤118.(8分)已知:如圖,在四邊形ABCD中,AB∥CD,對角線AC、BD交于點E,點F在邊AB上,連接CF交線段BE于點G,CG2=GE?GD.求證:∠ACF=∠ABD;連接EF,求證:EF?CG=EG?CB.19.(8分)如圖,△ABC內接于⊙O,過點C作BC的垂線交⊙O于D,點E在BC的延長線上,且∠DEC=∠BAC.求證:DE是⊙O的切線;若AC∥DE,當AB=8,CE=2時,求⊙O直徑的長.20.(8分)如圖,四邊形ABCD內接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.(1)求證:DE是⊙O的切線;(2)若AC∥DE,當AB=8,CE=2時,求AC的長.21.(8分)某商場將每件進價為80元的某種商品原來按每件100元出售,一天可售出100件.后來經過市場調查,發現這種商品單價每降低1元,其銷量可增加10件.(1)求商場經營該商品原來一天可獲利潤多少元?(2)設后來該商品每件降價x元,商場一天可獲利潤y元.①若商場經營該商品一天要獲利潤2160元,則每件商品應降價多少元?②求出y與x之間的函數關系式,并通過畫該函數圖象的草圖,觀察其圖象的變化趨勢,結合題意寫出當x取何值時,商場獲利潤不少于2160元.22.(10分)如圖,數軸上的點A、B、C、D、E表示連續的五個整數,對應數分別為a、b、c、d、e.(1)若a+e=0,則代數式b+c+d=;(2)若a是最小的正整數,先化簡,再求值:a+1a-2(3)若a+b+c+d=2,數軸上的點M表示的實數為m(m與a、b、c、d、e不同),且滿足MA+MD=3,則m的范圍是.23.(12分)如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;(2)將△ABC繞原點O逆時針旋轉90°后得到△A2B2C2,請畫出△A2B2C2;(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)24.如圖,矩形ABCD中,AB>AD,把矩形沿對角線AC所在直線折疊,使點B落在點E處,AE交CD于點F,連接DE,求證:∠DAE=∠ECD.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據題意,表示出兩種方式的總人數,然后根據人數不變列方程即可.【詳解】根據題意可得:每車坐3人,兩車空出來,可得人數為3(x-2)人;每車坐2人,多出9人無車坐,可得人數為(2x+9)人,所以所列方程為:3(x-2)=2x+9.故選B.【點睛】此題主要考查了一元一次方程的應用,關鍵是找到問題中的等量關系:總人數不變,列出相應的方程即可.2、D【解析】

根據統計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:根據統計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,A、袋中裝有大小和質地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球的概率為,不符合題意;B、擲一枚質地均勻的正六面體骰子,向上的面的點數是偶數的概率為,不符合題意;C、先后兩次擲一枚質地均勻的硬幣,兩次都出現反面的概率為,不符合題意;D、先后兩次擲一枚質地均勻的正六面體骰子,兩次向上的面的點數之和是7或超過9的概率為,符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩定值即概率.用到的知識點為:概率=所求情況數與總情況數之比.3、D【解析】如圖,因為,∠1=30°,∠1+∠3=60°,所以∠3=30°,因為AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故選D.4、B【解析】

先利用垂徑定理得到弧AD=弧BD,然后根據圓周角定理得到∠C=∠BOD,從而可對各選項進行判斷.【詳解】解:∵直徑CD⊥弦AB,∴弧AD=弧BD,∴∠C=∠BOD.故選B.【點睛】本題考查了垂徑定理和圓周角定理,垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧.圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.5、B【解析】試題分析:正方形ABCD繞點A順時針方向旋轉180°后,C點的對應點與C一定關于A對稱,A是對稱點連線的中點,據此即可求解.試題解析:AC=2,則正方形ABCD繞點A順時針方向旋轉180°后C的對應點設是C′,則AC′=AC=2,則OC′=3,故C′的坐標是(3,0).故選B.考點:坐標與圖形變化-旋轉.6、C【解析】試題分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC繞點A旋轉到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故選C.考點:1.面動旋轉問題;2.平行線的性質;3.旋轉的性質;4.等腰三角形的性質.7、A【解析】

(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(1)直角三角板的一條直角邊始終經過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.【詳解】證明:(1)如圖1,連接OM,OA.∵連接OP,作OP的垂直平分線l,交OP于點A,∴OA=AP.∵以點A為圓心、OA為半徑畫弧、交⊙O于點M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;(1)如圖1.∵直角三角板的一條直角邊始終經過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.故兩位同學的作法都正確.故選A.【點睛】本題考查了復雜的作圖,重點是運用切線的判定來說明作法的正確性.8、B【解析】【分析】由已知可證△ABO∽CDO,故,即.【詳解】由已知可得,△ABO∽CDO,所以,,所以,,所以,AB=5.4故選B【點睛】本題考核知識點:相似三角形.解題關鍵點:熟記相似三角形的判定和性質.9、D【解析】

∵A(,),B(2,)兩點在雙曲線上,∴根據點在曲線上,點的坐標滿足方程的關系,得.∵,∴,解得.故選D.【詳解】請在此輸入詳解!10、D【解析】試題分析:根據中位數和眾數的定義分別進行解答即可.把這組數據從小到大排列:3,6,7,7,8,8,8,8出現了3次,出現的次數最多,則眾數是8;最中間的數是7,則這組數據的中位數是7考點:(1)眾數;(2)中位數.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】

先由多邊形的內角和和外角和的關系判斷出多邊形的邊數,即可得到結論.【詳解】設多邊形的邊數為n.因為正多邊形內角和為(n-2)?180°,正多邊形外角和為根據題意得:(n-2)?180解得:n=8.∴這個正多邊形的每個外角=360則這個正多邊形的每個內角是180°故答案為:1.【點睛】考查多邊形的內角和與外角和,熟練掌握多邊形內角和公式是解題的關鍵.12、67.1【解析】試題分析:∵圖中是正八邊形,∴各內角度數和=(8﹣2)×180°=1080°,∴∠HAB=1080°÷8=131°,∴∠BAE=131°÷2=67.1°.故答案為67.1.考點:多邊形的內角13、2【解析】

設EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【詳解】設EF=x,

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,

∴BD=AB=4+4,EF=BF=x,

∴BE=x,

∵∠BAE=22.5°,

∴∠DAE=90°-22.5°=67.5°,

∴∠AED=180°-45°-67.5°=67.5°,

∴∠AED=∠DAE,

∴AD=ED,

∴BD=BE+ED=x+4+2=4+4,

解得:x=2,

即EF=2.14、【解析】

首先根據算術平方根的定義計算先=2,再求2的算術平方根即可.【詳解】∵=2,∴的算術平方根為.【點睛】本題考查了算術平方根,屬于簡單題,熟悉算數平方根的概念是解題關鍵.15、【解析】

利用相似三角形的性質即可求解;【詳解】解:∵AB∥CD,∴△AEB∽△CED,∴,∴,故答案為.【點睛】本題考查相似三角形的性質和判定,解題的關鍵是熟練掌握相似三角形的性質.16、甲【解析】由圖表明乙這8次成績偏離平均數大,即波動大,而甲這8次成績,分布比較集中,各數據偏離平均小,方差小,則S2甲<S2乙,即兩人的成績更加穩定的是甲.故答案為甲.三、解答題(共8題,共72分)17、x≥.【解析】

根據解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數化為1可得.【詳解】2(2﹣3x)﹣3(x﹣1)≤6,4﹣6x﹣3x+3≤6,﹣6x﹣3x≤6﹣4﹣3,﹣9x≤﹣1,x≥.【點睛】考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.18、(1)證明見解析;(2)證明見解析.【解析】試題分析:(1)先根據CG2=GE?GD得出,再由∠CGD=∠EGC可知△GCD∽△GEC,∠GDC=∠GCE.根據AB∥CD得出∠ABD=∠BDC,故可得出結論;(2)先根據∠ABD=∠ACF,∠BGF=∠CGE得出△BGF∽△CGE,故.再由∠FGE=∠BGC得出△FGE∽△BGC,進而可得出結論.試題解析:(1)∵CG2=GE?GD,∴.又∵∠CGD=∠EGC,∴△GCD∽△GEC,∴∠GDC=∠GCE.∵AB∥CD,∴∠ABD=∠BDC,∴∠ACF=∠ABD.(2)∵∠ABD=∠ACF,∠BGF=∠CGE,∴△BGF∽△CGE,∴.又∵∠FGE=∠BGC,∴△FGE∽△BGC,∴,∴FE?CG=EG?CB.考點:相似三角形的判定與性質.19、(1)見解析;(2)⊙O直徑的長是4.【解析】

(1)先判斷出BD是圓O的直徑,再判斷出BD⊥DE,即可得出結論;

(2)先判斷出AC⊥BD,進而求出BC=AB=8,進而判斷出△BDC∽△BED,求出BD,即可得出結論.【詳解】證明:(1)連接BD,交AC于F,∵DC⊥BE,∴∠BCD=∠DCE=90°,∴BD是⊙O的直徑,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵弧BC=弧BC,∴∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴BD⊥DE,∴DE是⊙O切線;解:(2)∵AC∥DE,BD⊥DE,∴BD⊥AC.∵BD是⊙O直徑,∴AF=CF,∴AB=BC=8,∵BD⊥DE,DC⊥BE,∴∠BCD=∠BDE=90°,∠DBC=∠EBD,∴△BDC∽△BED,∴=,∴BD2=BC?BE=8×10=80,∴BD=4.即⊙O直徑的長是4.【點睛】此題主要考查圓周角定理,垂徑定理,相似三角形的判定和性質,切線的判定和性質,第二問中求出BC=8是解本題的關鍵.20、(1)證明見解析;(2)AC的長為.【解析】

(1)先判斷出BD是圓O的直徑,再判斷出BD⊥DE,即可得出結論;(2)先判斷出AC⊥BD,進而求出BC=AB=8,進而判斷出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判斷出△CFD∽△BCD,即可得出結論.【詳解】(1)如圖,連接BD,∵∠BAD=90°,∴點O必在BD上,即:BD是直徑,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵點D在⊙O上,∴DE是⊙O的切線;(2)∵DE∥AC.∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD.∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=1.在Rt△BCD中,BD==1,同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2C=.【點睛】考查了圓周角定理,垂徑定理,相似三角形的判定和性質,切線的判定和性質,勾股定理,求出BC=8是解本題的關鍵.21、(1)一天可獲利潤2000元;(2)①每件商品應降價2元或8元;②當2≤x≤8時,商店所獲利潤不少于2160元.【解析】:(1)原來一天可獲利:20×100=2000元;(2)①y=(20-x)(100+10x)=-10(x2-10x-200),由-10(x2-10x-200)=2160,解得:x1=2,x2=8,∴每件商品應降價2或8元;②觀察圖像可得22、(1)0;(1)a+2a+1,3【解析】

(1)根據a+e=0,可知a與e互為相反數,則c=0,可得b=-1,d=1,代入可得代數式b+c+d的值;(1)根據題意可得:a=1,將分式計算并代入可得結論即可;(3)先根據A、B、C、D、E為連續整數,即可求出a的值,再根據MA+MD=3,列不等式可得結論.【詳解】解:(1)∵a+e=0,即a、e互為相反數,∴點C表示原點,∴b、d也互為相反數,則a+b+c+d+e=0,故答案為:0;(1)∵a是最小的正整數,∴a=1,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論