2023屆重慶市外國語學校數學九年級第一學期期末監測模擬試題含解析_第1頁
2023屆重慶市外國語學校數學九年級第一學期期末監測模擬試題含解析_第2頁
2023屆重慶市外國語學校數學九年級第一學期期末監測模擬試題含解析_第3頁
2023屆重慶市外國語學校數學九年級第一學期期末監測模擬試題含解析_第4頁
2023屆重慶市外國語學校數學九年級第一學期期末監測模擬試題含解析_第5頁
免費預覽已結束,剩余20頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,是正內一點,若將繞點旋轉到,則的度數為()A. B.C. D.2.如圖,的半徑等于,如果弦所對的圓心角等于,那么圓心到弦的距離等于()A. B. C. D.3.下列說法不正確的是()A.所有矩形都是相似的B.若線段a=5cm,b=2cm,則a:b=5:2C.若線段AB=cm,C是線段AB的黃金分割點,且AC>BC,則AC=cmD.四條長度依次為lcm,2cm,2cm,4cm的線段是成比例線段4.揚帆中學有一塊長,寬的矩形空地,計劃在這塊空地上劃出四分之一的區域種花,小禹同學設計方案如圖所示,求花帶的寬度.設花帶的寬度為,則可列方程為()A. B.C. D.5.將拋物線如何平移得到拋物線()A.向左平移2個單位,向上平移3個單位; B.向右平移2個單位,向上平移3個單位;C.向左平移2個單位,向下平移3個單位; D.向右平移2個單位,向下平移3個單位.6.三角形兩邊長分別是和,第三邊長是一元二次方程的一個實數根,則該三角形的面積是()A. B. C.或 D.或7.對于反比例函數,下列說法錯誤的是()A.它的圖象分別位于第二、四象限B.它的圖象關于成軸對稱C.若點,在該函數圖像上,則D.的值隨值的增大而減小8.如圖,△ABC的內切圓⊙O與BC、CA、AB分別相切于點D、E、F,且AB=5,BC=13,CA=12,則陰影部分(即四邊形AEOF)的面積是()A.4 B.6.25 C.7.5 D.99.若氣象部門預報明天下雨的概率是,下列說法正確的是()A.明天一定會下雨 B.明天一定不會下雨C.明天下雨的可能性較大 D.明天下雨的可能性較小10.如圖,拋物線的對稱軸為直線,與軸的一個交點坐標為,其部分圖象如圖所示,下列結論:①;②;③方程的兩個根是,;④當時,的取值范圍是;⑤當時,隨增大而增大其中結論正確的個數是A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.已知某轎車油箱注滿油后,以平均耗油量為每千米耗油0.1升的速度行駛,可行駛700千米,該轎車可行駛的總路程S與平均耗油量a之間的函數解析式(關系式)為________.12.一個質地均勻的小正方體,六個面分別標有數字1,1,2,4,5,5,隨機擲一次小正方體,朝上一面的數字是奇數的概率是__________.13.在中,,則的面積為_________14.如圖,反比例函數的圖象位于第一、三象限,且圖象上的點與坐標軸圍成的矩形面積為2,請你在第三象限的圖象上取一個符合題意的點,并寫出它的坐標______________.15.如圖,從外一點引的兩條切線、,切點分別是、,若,是弧上的一個動點(點與、兩點不重合),過點作的切線,分別交、于點、,則的周長是________.16.已知關于x的方程有兩個實數根,則實數k的取值范圍為____________.17.如圖,BD是⊙O的直徑,∠CBD=30°,則∠A的度數為_____.18.如圖,AB是⊙O的直徑,且AB=6,弦CD⊥AB交AB于點P,直線AC,DB交于點E,若AC:CE=1:2,則OP=_____.三、解答題(共66分)19.(10分)如圖,在菱形中,點是邊上一點,延長至點,使,連接求證:.20.(6分)如圖,在中,,在,上取一點,以為直徑作,與相交于點,作線段的垂直平分線交于點,連接.(1)求證:是的切線;(2)若,的半徑為.求線段與線段的長.21.(6分)解一元二次方程:.22.(8分)在平面直角坐標系xOy中,已知拋物線G:y=ax2﹣2ax+4(a≠0).(1)當a=1時,①拋物線G的對稱軸為x=;②若在拋物線G上有兩點(2,y1),(m,y2),且y2>y1,則m的取值范圍是;(2)拋物線G的對稱軸與x軸交于點M,點M與點A關于y軸對稱,將點M向右平移3個單位得到點B,若拋物線G與線段AB恰有一個公共點,結合圖象,求a的取值范圍.23.(8分)如圖,為了測量山腳到塔頂的高度(即的長),某同學在山腳處用測角儀測得塔頂的仰角為,再沿坡度為的小山坡前進400米到達點,在處測得塔頂的仰角為.(1)求坡面的鉛垂高度(即的長);(2)求的長.(結果保留根號,測角儀的高度忽略不計).24.(8分)某商店購進一種商品,每件商品進價30元.試銷中發現這種商品每天的銷售量y(件)與每件銷售價x(元)的關系數據如下:x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數關系,根據上表,求出y與x之間的關系式(不寫出自變量x的取值范圍);(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價應定為多少元?(3)設該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關系式,并求出每件商品銷售價定為多少元時利潤最大?25.(10分)如圖,拋物線y=x2﹣2x﹣3與x軸分別交于A,B兩點(點A在點B的左邊),與y軸交于點C,頂點為D.(1)如圖1,求△BCD的面積;(2)如圖2,P是拋物線BD段上一動點,連接CP并延長交x軸于E,連接BD交PC于F,當△CDF的面積與△BEF的面積相等時,求點E和點P的坐標.26.(10分)如圖,是的直徑,點在上,,FD切于點,連接并延長交于點,點為中點,連接并延長交于點,連接,交于點,連接.(1)求證:;(2)若的半徑為,求的長.

參考答案一、選擇題(每小題3分,共30分)1、B【分析】根據旋轉的性質可得:△PBC≌△P′BA,故∠PBC=∠P′BA,即可求解.【詳解】由已知得△PBC≌△P′BA,所以∠PBC=∠P′BA,所以∠PBP′=∠P′BA+∠PBA,=∠PBC+∠PBA,=∠ABC,=60°.故選:B.【點睛】本題考查旋轉的性質.旋轉變化前后,對應線段、對應角分別相等,圖形的大小、形狀都不改變.2、C【分析】過O作OD⊥AB于D,根據等腰三角形三線合一得∠BOD=60°,由30°角所對的直角邊等于斜邊的一半求解即可.【詳解】解:過O作OD⊥AB,垂足為D,∵OA=OB,∴∠BOD=∠AOB=×120°=60°,∴∠B=30°,∴OD=OB=×4=2.即圓心到弦的距離等于2.故選:C.【點睛】本題考查圓的基本性質及等腰三角形的性質,含30°角的直角三角形的性質,根據題意作出輔助線,解直角三角形是解答此題的關鍵.3、A【解析】根據相似多邊形的性質,矩形的性質,成比例線段,黃金分割判斷即可.【詳解】解:A.所有矩形對應邊的比不一定相等,所以不一定都是相似的,A不正確,符合題意;B.若線段a=5cm,b=2cm,則a:b=5:2,B正確,不符合題意;C.若線段AB=cm,C是線段AB的黃金分割點,且AC>BC,則AC=cm,C正確,不符合題意;D.∵1:2=2:4,∴四條長度依次為lcm,2cm,2cm,4cm的線段是成比例線段,D正確,不符合題意;故選:A.【點睛】本題考查的是相似多邊形的性質,矩形的性質,成比例線段,黃金分割,掌握它們的概念和性質是解題的關鍵.4、D【分析】根據空白區域的面積矩形空地的面積可得.【詳解】設花帶的寬度為,則可列方程為,故選D.【點睛】本題主要考查由實際問題抽象出一元二次方程,解題的關鍵是根據圖形得出面積的相等關系.5、C【分析】根據二次函數圖象的平移規律“左加右減,上加下減”即可得出答案.【詳解】根據二次函數的平移規律可知,將拋物線向左平移2個單位,再向下平移3個單位即可得到拋物線,故選:C.【點睛】本題主要考查二次函數圖象的平移,掌握二次函數圖象的平移規律是解題的關鍵.6、D【分析】先利用因式分解法解方程得到所以,,再分類討論:當第三邊長為6時,如圖,在中,,,作,則,利用勾股定理計算出,接著計算三角形面積公式;當第三邊長為10時,利用勾股定理的逆定理可判斷此三角形為直角三角形,然后根據三角形面積公式計算三角形面積.【詳解】解:,或,所以,,I.當第三邊長為6時,如圖,在中,,,作,則,,所以該三角形的面積;II.當第三邊長為10時,由于,此三角形為直角三角形,所以該三角形的面積,綜上所述:該三角形的面積為24或.故選:D.【點睛】本題考查的是利用因式分解法解一元二次方程,等腰三角形的性質,勾股定理及其逆定理,解答此題時要注意分類討論,不要漏解.7、D【分析】根據反比例函數的性質對各選項逐一分析即可.【詳解】解:反比例函數,,圖像在二、四象限,故A正確.反比例函數,當時,圖像關于對稱;當時,圖像關于對稱,故B正確當,的值隨值的增大而增大,,則,故C正確在第二象限或者第四象限,的值隨值的增大而增大,故D錯誤故選D【點睛】本題主要考查了反比例函數的性質.8、A【分析】先利用勾股定理判斷△ABC為直角三角形,且∠BAC=90°,繼而證明四邊形AEOF為正方形,設⊙O的半徑為r,利用面積法求出r的值即可求得答案.【詳解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC為直角三角形,且∠BAC=90°,∵⊙O為△ABC內切圓,∴∠AFO=∠AEO=90°,且AE=AF,∴四邊形AEOF為正方形,設⊙O的半徑為r,∴OE=OF=r,∴S四邊形AEOF=r2,連接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴,∴r=2,∴S四邊形AEOF=r2=4,故選A.【點睛】本題考查了三角形的內切圓,勾股定理的逆定理,正方形判定與性質,面積法等,正確把握相關知識是解題的關鍵.9、C【分析】根據概率的意義找到正確選項即可.【詳解】解:氣象部門預報明天下雨的概率是,說明明天下雨的可能性比較大,所以只有C合題意.故選:C.【點睛】此題主要考查了概率的意義,關鍵是理解概率表示隨機事件發生的可能性大小:可能發生,也可能不發生.10、C【分析】利用拋物線與軸的交點個數可對①進行判斷;由對稱軸方程得到,然后根據時函數值為0可得到,則可對②進行判斷;利用拋物線的對稱性得到拋物線與軸的一個交點坐標為,則可對③進行判斷;根據拋物線在軸上方所對應的自變量的范圍可對④進行判斷;根據二次函數的性質對⑤進行判斷.【詳解】解:拋物線與軸有2個交點,,所以①正確;,即,而時,,即,,所以②錯誤;拋物線的對稱軸為直線,而點關于直線的對稱點的坐標為,方程的兩個根是,,所以③正確;根據對稱性,由圖象知,當時,,所以④錯誤;拋物線的對稱軸為直線,當時,隨增大而增大,所以⑤正確.故選:.【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數,二次項系數決定拋物線的開口方向和大小:當時,拋物線向上開口;當時,拋物線向下開口;一次項系數和二次項系數共同決定對稱軸的位置:當與同號時(即,對稱軸在軸左;當與異號時(即,對稱軸在軸右;常數項決定拋物線與軸交點位置:拋物線與軸交于;拋物線與軸交點個數由△決定:△時,拋物線與軸有2個交點;△時,拋物線與軸有1個交點;△時,拋物線與軸沒有交點.二、填空題(每小題3分,共24分)11、【分析】根據油箱的總量固定不變,利用每千米耗油0.1升乘以700千米即可得到油箱的總量,故可求解.【詳解】依題意得油箱的總量為:每千米耗油0.1升乘以700千米=70升∴轎車可行駛的總路程S與平均耗油量a之間的函數解析式(關系式)為故答案為:.【點睛】此題主要考查列函數關系式,解題的關鍵是根據題意找到等量關系列出關系式.12、【分析】直接利用概率求法進而得出答案.【詳解】∵一個質地均勻的小正方體,六個面分別標有數字1,1,2,4,5,5,∴隨機擲一次小正方體,朝上一面的數字是奇數的概率是:.故答案為:.【點睛】此題主要考查了概率公式,正確掌握概率公式是解題關鍵.13、【分析】過點點B作BD⊥AC于D,根據鄰補角的定義求出∠BAD=60°,再根據∠BAD的正弦求出AD,然后根據三角形的面積公式列式計算即可得解.【詳解】如圖,過點B作BD⊥AC交AC延長線于點D,

∵∠BAC=120°,

∴∠BAD=180°-120°=60°,∵,∴,∴△ABC的面積.

故答案為:.【點睛】本題主要考查了運用勾股定理和銳角三角函數的概念解直角三角形問題,作出圖形更形象直觀.14、滿足的第三象限點均可,如(-1,-2)【分析】因為過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積S是個定值,即S=|k|.【詳解】解:∵圖象上的點與坐標軸圍成的矩形面積為2,

∴|k|=2,

∴反比例函數y=的圖象在一、三象限,k>0,

∴k=2,

∴此反比例函數的解析式為.∴第三象限點均可,可取:當x=-1時,y=-2綜上所述,答案為:滿足的第三象限點均可,如(-1,-2)【點睛】本題考查的是反比例函數系數k的幾何意義,即過反比例函數圖象上任意一點向兩坐標軸引垂線,所得矩形的面積為|k|.15、【解析】由切線長定理得CD=AD,CE=BE,PA=PB,表示出△PED的周長即可解題.【詳解】解:由切線長定理得CD=AD,CE=BE,PA=PB;

所以△PED的周長=PD+DC+CE+PE=PD+AD+BE+PE=PA+PB=2PA=16cm.【點睛】本題考查了圓的切線,屬于簡單題,熟悉圓的切線長定理是解題關鍵.16、【分析】根據一元二次方程有兩個實數根,可知,列不等式即可求出k的取值范圍.【詳解】∵關于x的方程有兩個實數根∴解得故答案為:.【點睛】本題考查根據一元二次方程根的情況求參數,解題的關鍵是掌握判別式與一元二次方程根的情況之間的關系.17、60°【解析】解:∵BD是⊙O的直徑,∴∠BCD=90°(直徑所對的圓周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的兩個銳角互余),∴∠A=∠D=60°(同弧所對的圓周角相等);故答案是:60°18、1.【分析】過點E作EF⊥AB于點F,證明△ACP∽△AEF以及△PBD∽△FBE,設PB=x,然后利用相似三角形的性質即可求出答案.【詳解】過點E作EF⊥AB于點F,∵CP⊥AB,AC:CE=1:2,∴CP∥EF,AC:AE=1:3,∴△ACP∽△AEF,∴,∵PD∥EF,∴△PBD∽△FBE,∴,∵PC=PD,∴,設PB=x,BF=3x,∴AP=6﹣x,AF=6+3x,∴,解得:x=2,∴PB=2,∴OP=1,故答案為:1.【點睛】本題考查了圓中的計算問題,熟練掌握垂徑定理,相似三角形的判定與性質是解題的關鍵.三、解答題(共66分)19、見解析.【分析】根據菱形的性質得出∠A=∠CBF,進而判斷出△ABE≌△BCF,即可得出答案.【詳解】證明:∵四邊形是菱形∴∴在和中∴∴BE=CF【點睛】本題考查的是菱形和全等三角形,比較簡單,需要熟練掌握相關基礎知識.20、(1)見解析;(2)【分析】(1)根據題意,證出EN與OE垂直即可;(2)求線段的長一般構造直角三角形,利用勾股定理來求解.在Rt△OEN、Rt△OCN△中,EN2=ON2-OE2,ON2=OC2+CN2,CN=4-EN代入可求EN;同理構造直角三角形Rt△AED、Rt△EDB、Rt△DCB,AE2=AD2-DE2,DE2=DB2-BE2,DB2=CD2+CB2=12+42=17,代入求AE.【詳解】證明:連接是的垂直平分線即是半徑是圓的切線解:連接設長為,則,圓的半徑為解得,所以連接設∴AB=5,∵AD是直徑,∴△ADE是直角三角形則為直徑,∴△DEB是直角三角形,即(22-y2)+(5-y)2=17解得【點睛】本題考查了切線的判定,勾股定理的運用,在運用勾股定理時需要構造與所求線段有關的直角三角形,問題關鍵是找到已知線段和所求線段之間的關系.21、【解析】用直配方法解方程即可.【詳解】解:原方程可化為:,∴,解得:.22、(1)①1;②m>2或m<0;(2)﹣<a≤﹣或a=1.【分析】(1)當a=1時,①根據二次函數一般式對稱軸公式,即可求得拋物線G的對稱軸;②根據拋物線的對稱性求得關于對稱軸的對稱點為,再利用二次函數圖像的增減性即可求得答案;(2)根據平移的性質得出、,由題意根據函數圖象分三種情況進行討論,即可得解.【詳解】解:(1)①∵當a=1時,拋物線G:y=ax2﹣2ax+1(a≠0)為:∴拋物線G的對稱軸為;②畫出函數圖象:∵在拋物線G上有兩點(2,y1),(m,y2),且y2>y1,,∴①當時,隨的增大而增大,此時有;②當時,隨的增大而減小,拋物線G上點關于對稱軸的對稱點為,此時有.∴m的取值范圍是或;(2)∵拋物線G:y=ax2﹣2ax+1(a≠0的對稱軸為x=1,且對稱軸與x軸交于點M∴點M的坐標為(1,0)∵點M與點A關于y軸對稱∴點A的坐標為(﹣1,0)∵點M右移3個單位得到點B∴點B的坐標為(1,0)依題意,拋物線G與線段AB恰有一個公共點把點A(﹣1,0)代入y=ax2﹣2ax+1,可得;把點B(1,0)代入y=ax2﹣2ax+1,可得;把點M(1,0)代入y=ax2﹣2ax+1,可得a=1.根據所畫圖象可知拋物線G與線段AB恰有一個公共點時可得:或.故答案是:(1)①1;②m>2或m<0;(2)或【點睛】本題考查了二次函數圖像的性質、二次函數圖象上的點的坐標特征以及坐標平移,解決本題的關鍵是綜合利用二次函數圖象的性質.23、(1)200;(2).【分析】(1)根據AB的坡度得,再根據∠BAH的正弦和斜邊長度即可解答;(2)過點作于點,得到矩形,再設米,再由∠DBE=60°的正切值,用含x的代數式表示DE的長,而矩形中,CE=BH=200米,可得DC的長,米,最后根據△ADC是等腰三角形即可解答.【詳解】解:(1)在中,,∴∴米(2)過點作于點,如圖:∴四邊形是矩形,∴米設米∴在中,米∴米在中∴米在中,,∴即解得∴米(本題也可通過證明矩形是正方形求解.)【點睛】本題考查解直角三角形,解題關鍵是構造直角三角形,利用三角函數表示出相關線段的長度.24、(1)y=-2x+100;(2)35元或45元;(3)W=-2x2+160x-3000,40元時利潤最大.【解析】試題分析:(1)設一次函數解析式,將表格中任意兩組x,y值代入解出k,b,即可求出該解析式;(2)利潤等于單件利潤乘以銷售量,而單件利潤又等于每件商品的銷售價減去進價,從而建立每件商品的銷售價與利潤的一元二次方程求解;(3)將w替換上題中的150元,建立w與x的二次函數,化成一般式,看二次項系數,討論x取值,從而確定每件商品銷售價定為多少元時利潤最大.試題解析:(1)設該函數的表達式為y=kx+b(k≠0),根據題意,得,解得,∴該函數的表達式為y=-2x+100;(2)根據題意得:(-2x+100)(x-30)="150",解這個方程得,x1=35,x2=45∴每件商品的銷售價定為35元或45元時日利潤為150元.(3)根據題意得:w=(-2x+100)(x-30)=-2x2+160x-3000=-2(x-40)2+200,∵a=-2<0,則拋物線開口向下,函數有最大值,即當x=40時,w的值最大,∴當銷售單價為40元時獲得利潤最大.考點:一次函數與二次函數的實際應用.25、(1)3;(2)E(5,0),P(,﹣)【分析】(1)分別求出點C,頂點D,點A,B的坐標,如圖1,連接BC,過點D作DM⊥y軸于點M,作點D作DN⊥x軸于點N,證明△BCD是直角三角形,即可由三角形的面積公式求出其面積;(2)先求出直線BD的解析式,設P(a,a2﹣2a﹣3),用含a的代數式表示出直線PC的解析式,聯立兩解析式求出含a的代數式的點F的坐標,過點C作x軸的平行線,交BD于點H,則yH=﹣3,由△CDF與△BEF的面積相等,列出方程,求出a的值,即可寫出E,P的坐標.【詳解】(1)在y=x2﹣2x﹣3中,當x=0時,y=﹣3,∴C(0,﹣3),當x=﹣=1時,y=﹣4,∴頂點D(1,﹣4),當y=0時,x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),如圖1,連接BC,過點D作DM⊥y軸于點M,作點D作DN⊥x軸于點N,∴DC2=DM2+CM2=2,BC2=OC2+OB2=18,DB2=DN2+BN2=20,∴DC2+BC2=DB2,∴△BCD是直角三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論