福建省泉州市南安第一中學2023學年高三第二次診斷性檢測數學試卷(含答案解析)_第1頁
福建省泉州市南安第一中學2023學年高三第二次診斷性檢測數學試卷(含答案解析)_第2頁
福建省泉州市南安第一中學2023學年高三第二次診斷性檢測數學試卷(含答案解析)_第3頁
福建省泉州市南安第一中學2023學年高三第二次診斷性檢測數學試卷(含答案解析)_第4頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.2.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.3.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.4.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數列,則此雙曲線的離心率為()A. B. C. D.5.已知六棱錐各頂點都在同一個球(記為球)的球面上,且底面為正六邊形,頂點在底面上的射影是正六邊形的中心,若,,則球的表面積為()A. B. C. D.6.若的展開式中的系數之和為,則實數的值為()A. B. C. D.17.已知復數z1=3+4i,z2=a+i,且z1是實數,則實數a等于()A. B. C.- D.-8.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.9.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.10.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.3211.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a12.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.已知函數若關于的不等式的解集為,則實數的所有可能值之和為_______.14.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.15.函數過定點________.16.利用等面積法可以推導出在邊長為a的正三角形內任意一點到三邊的距離之和為定值,類比上述結論,利用等體積法進行推導,在棱長為a的正四面體內任意一點到四個面的距離之和也為定值,則這個定值是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在,角、、所對的邊分別為、、,已知.(1)求的值;(2)若,邊上的中線,求的面積.18.(12分)已知凸邊形的面積為1,邊長,,其內部一點到邊的距離分別為.求證:.19.(12分)已知函數.(1)若在處取得極值,求的值;(2)求在區間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立.20.(12分)在平面直角坐標系xOy中,曲線l的參數方程為(為參數),以原點O為極點,x軸非負半軸為極軸建立極坐標系,曲線C的極坐標方程為4sin.(1)求曲線C的普通方程;(2)求曲線l和曲線C的公共點的極坐標.21.(12分)(某工廠生產零件A,工人甲生產一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產一件零件A,是一等品、二等品、三等品的概率分別為.己知生產一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據生產一件零件A給工廠帶來的效益的期望值判斷甲乙技術的好壞;(2)為鼓勵工人提高技術,工廠進行技術大賽,最后甲乙兩人進入了決賽.決賽規則是:每一輪比賽,甲乙各生產一件零件A,如果一方生產的零件A品級優干另一方生產的零件,則該方得分1分,另一方得分-1分,如果兩人生產的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.22.(10分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.

2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【答案解析】

首先求得兩曲線的交點坐標,據此可確定積分區間,然后利用定積分的幾何意義求解面積值即可.【題目詳解】聯立方程:可得:,,結合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項.【答案點睛】本題主要考查定積分的概念與計算,屬于中等題.2.D【答案解析】

求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標公式,結合焦點的坐標,可得的方程組,求得的值,即可得到答案.【題目詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設,則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標準方程為.故選:D.【答案點睛】本題主要考查了雙曲線的標準方程的求解,其中解答中屬于運用雙曲線的焦點和聯立方程組,合理利用根與系數的關系和中點坐標公式是解答的關鍵,著重考查了推理與運算能力.3.D【答案解析】

根據拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【題目詳解】直線F2A的直線方程為:y=kx,F1(0,),F2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【答案點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.4.B【答案解析】

求得雙曲線的一條漸近線方程,設出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數列中項性質和離心率公式,計算可得所求值.【題目詳解】設雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設,,則,,,由,,成等差數列,可得,化為,即,可得,故選:.【答案點睛】本題考查雙曲線的方程和性質,主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學生對這些知識的理解掌握水平.5.D【答案解析】

由題意,得出六棱錐為正六棱錐,求得,再結合球的性質,求得球的半徑,利用表面積公式,即可求解.【題目詳解】由題意,六棱錐底面為正六邊形,頂點在底面上的射影是正六邊形的中心,可得此六棱錐為正六棱錐,又由,所以,在直角中,因為,所以,設外接球的半徑為,在中,可得,即,解得,所以外接球的表面積為.故選:D.【答案點睛】本題主要考查了正棱錐的幾何結構特征,以及外接球的表面積的計算,其中解答中熟記幾何體的結構特征,熟練應用球的性質求得球的半徑是解答的關鍵,著重考查了空間想象能力,以及推理與計算能力,屬于中檔試題.6.B【答案解析】

由,進而分別求出展開式中的系數及展開式中的系數,令二者之和等于,可求出實數的值.【題目詳解】由,則展開式中的系數為,展開式中的系數為,二者的系數之和為,得.故選:B.【答案點睛】本題考查二項式定理的應用,考查學生的計算求解能力,屬于基礎題.7.A【答案解析】分析:計算,由z1,是實數得,從而得解.詳解:復數z1=3+4i,z2=a+i,.所以z1,是實數,所以,即.故選A.點睛:本題主要考查了復數共軛的概念,屬于基礎題.8.B【答案解析】

先分別判斷命題真假,再由復合命題的真假性,即可得出結論.【題目詳解】為真命題;命題是假命題,比如當,或時,則不成立.則,,均為假.故選:B【答案點睛】本題考查復合命題的真假性,判斷簡單命題的真假是解題的關鍵,屬于基礎題.9.D【答案解析】

根據點差法得,再根據焦點坐標得,解方程組得,,即得結果.【題目詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯立,解得,,故所求雙曲線的方程為.故選D.【答案點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.10.A【答案解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.11.C【答案解析】

兩復數相等,實部與虛部對應相等.【題目詳解】由,得,即a,b=1.∴b=9a.故選:C.【答案點睛】本題考查復數的概念,屬于基礎題.12.A【答案解析】

由題意分別判斷命題的充分性與必要性,可得答案.【題目詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【答案點睛】本題主要考查充分條件、必要條件的判定,意在考查學生的邏輯推理能力.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】

由分段函數可得不滿足題意;時,,可得,即有,解方程可得,4,結合指數函數的圖象和二次函數的圖象即可得到所求和.【題目詳解】解:由函數,可得的增區間為,,時,,,時,,當關于的不等式的解集為,,可得不成立,時,時,不成立;,即為,可得,即有,顯然,4成立;由和的圖象可得在僅有兩個交點.綜上可得的所有值的和為1.故答案為:1.【答案點睛】本題考查分段函數的圖象和性質,考查不等式的解法,注意運用分類討論思想方法,考查化簡運算能力,屬于中檔題.14.【答案解析】

由已知可得,結合雙曲線的定義可知,結合,從而可求出離心率.【題目詳解】解:,,又,則.,,,即解得,即.故答案為:.【答案點睛】本題考查了雙曲線的定義,考查了雙曲線的性質.本題的關鍵是根據幾何關系,分析出.關于圓錐曲線的問題,一般如果能結合幾何性質,可大大減少計算量.15.【答案解析】

令,,與參數無關,即可得到定點.【題目詳解】由指數函數的性質,可得,函數值與參數無關,所有過定點.故答案為:【答案點睛】此題考查函數的定點問題,關鍵在于找出自變量的取值使函數值與參數無關,熟記常見函數的定點可以節省解題時間.16.【答案解析】

計算正四面體的高,并計算該正四面體的體積,利用等體積法,可得結果.【題目詳解】作平面,為的重心如圖則,所以設正四面體內任意一點到四個面的距離之和為則故答案為:【答案點睛】本題考查類比推理的應用,還考查等體積法,考驗理解能力以及計算能力,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)答案不唯一,見解析【答案解析】

(1)由題意根據和差角的三角函數公式可得,再根據同角三角函數基本關系可得的值;(2)在中,由余弦定理可得,解方程分別由三角形面積公式可得答案.【題目詳解】解:(1)在中,因為,又已知,所以,因為,所以,于是.所以.(2)在中,由余弦定理得,得解得或,當時,的面積,當時,的面積.【答案點睛】本題考查正余弦定理理解三角形,涉及三角形的面積公式和分類討論思想,屬于中檔題.18.證明見解析【答案解析】

由已知,易得,所以利用柯西不等式和基本不等式即可證明.【題目詳解】因為凸邊形的面積為1,所以,所以(由柯西不等式得)(由均值不等式得)【答案點睛】本題考查利用柯西不等式、基本不等式證明不等式的問題,考查學生對不等式靈活運用的能力,是一道容易題.19.(1)2;(2);(3)證明見解析【答案解析】

(1)先求出函數的定義域和導數,由已知函數在處取得極值,得到,即可求解的值;(2)由(1)得,定義域為,分,和三種情況討論,分別求得函數的最小值,即可得到結論;(3)由,得到,把,只需證,構造新函數,利用導數求得函數的單調性與最值,即可求解.【題目詳解】(1)由,定義域為,則,因為函數在處取得極值,所以,即,解得,經檢驗,滿足題意,所以.(2)由(1)得,定義域為,當時,有,在區間上單調遞增,最小值為,當時,由得,且,當時,,單調遞減;當時,,單調遞增;所以在區間上單調遞增,最小值為,當時,則,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,綜上可得:當時,在區間上的最小值為1,當時,在區間上的最小值為.(3)由得,當時,,則,欲證,只需證,即證,即,設,則,當時,,在區間上單調遞增,當時,,即,故,即當時,恒有成立.【答案點睛】本題主要考查導數在函數中的綜合應用,以及不等式的證明,著重考查了轉化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構造新函數,利用導數研究函數的單調性,求出最值,進而得出相應的含參不等式,從而求出參數的取值范圍;也可分離變量,構造新函數,直接把問題轉化為函數的最值問題.20.(1)(2)(2,).【答案解析】

(1)利用極坐標和直角坐標的轉化公式求解.(2)先把兩個方程均化為普通方程,求解公共點的直角坐標,然后化為極坐標即可.【題目詳解】(1)∵曲線C的極坐標方程為,∴,則,即.(2),∴,聯立可得,(舍)或,公共點(,3),化為極坐標(2,).【答案點睛】本題主要考查極坐標和直角坐標的轉化及交點的求解,熟記極坐標和直角坐標的轉化公式是求解的關鍵,交點問題一般是統一一種坐標形式求解后再進行轉化,側重考查數學運算的核心素養.21

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論