福建省晉江市2022年高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第1頁(yè)
福建省晉江市2022年高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第2頁(yè)
福建省晉江市2022年高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第3頁(yè)
福建省晉江市2022年高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第4頁(yè)
福建省晉江市2022年高三下學(xué)期第六次檢測(cè)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知i是虛數(shù)單位,則1+ii+i1+i=( )A-12+32i B12-32i C32+12i D32-12i2已知角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn),則( )ABCD3設(shè)為非零實(shí)數(shù),且,則( )ABCD4已知(為虛數(shù)單位,

2、為的共軛復(fù)數(shù)),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( ).A第一象限B第二象限C第三象限D(zhuǎn)第四象限5設(shè)集合,若,則( )ABCD6是正四面體的面內(nèi)一動(dòng)點(diǎn),為棱中點(diǎn),記與平面成角為定值,若點(diǎn)的軌跡為一段拋物線,則( )ABCD7設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為( )A2BCD38已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為( )ABCD9已知ab0,c1,則下列各式成立的是()AsinasinbBcacbCacbcD10函數(shù)的大致圖象是( )ABCD11已知數(shù)列 中, ,若對(duì)于任意的,不等式恒成立,則實(shí)數(shù)的取值范圍為( )ABCD12寧波古圣王陽(yáng)明的傳習(xí)錄專門講過(guò)易經(jīng)

3、八卦圖,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每一卦由三根線組成(“”表示一根陽(yáng)線,“”表示一根陰線)從八卦中任取兩卦,這兩卦的六根線中恰有四根陰線的概率為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知數(shù)列滿足,則_14已知是等比數(shù)列,且,則_,的最大值為_(kāi)15如圖,是圓的直徑,弦的延長(zhǎng)線相交于點(diǎn)垂直的延長(zhǎng)線于點(diǎn)求證:16設(shè)滿足約束條件,則的取值范圍為_(kāi).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知橢圓:(),與軸負(fù)半軸交于,離心率.(1)求橢圓的方程;(2)設(shè)直線:與橢圓交于,兩點(diǎn),連接,并延長(zhǎng)交直線于,兩點(diǎn),已

4、知,求證:直線恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).18(12分)已知是遞增的等差數(shù)列,是方程的根.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19(12分)已知函數(shù)f(x)|x1|x2|.若不等式|ab|ab|a|f(x)(a0,a、bR)恒成立,求實(shí)數(shù)x的取值范圍20(12分)已知橢圓:()的左、右頂點(diǎn)分別為、,焦距為2,點(diǎn)為橢圓上異于、的點(diǎn),且直線和的斜率之積為.(1)求的方程;(2)設(shè)直線與軸的交點(diǎn)為,過(guò)坐標(biāo)原點(diǎn)作交橢圓于點(diǎn),試探究是否為定值,若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.21(12分)已知函數(shù)當(dāng)時(shí),求不等式的解集;,求a的取值范圍22(10分)a,b,c分別為ABC內(nèi)角A,B,C的對(duì)邊.已

5、知a3,且B60.(1)求ABC的面積; (2)若D,E是BC邊上的三等分點(diǎn),求.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1D【解析】利用復(fù)數(shù)的運(yùn)算法則即可化簡(jiǎn)得出結(jié)果【詳解】1+ii+i1+i=-i1+i-i2+i1-i1+i1-i=-i-i2+i-i22=-i+1+i2+12=32-12i故選D【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,屬于基礎(chǔ)題。2A【解析】由已知可得,根據(jù)二倍角公式即可求解.【詳解】角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn),則,.故選:A.【點(diǎn)睛】本題考查三角函數(shù)定義、二倍角公式,考查計(jì)算

6、求解能力,屬于基礎(chǔ)題.3C【解析】取,計(jì)算知錯(cuò)誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,故正確;取,計(jì)算知錯(cuò)誤;故選:.【點(diǎn)睛】本題考查了不等式性質(zhì),意在考查學(xué)生對(duì)于不等式性質(zhì)的靈活運(yùn)用.4D【解析】設(shè),由,得,利用復(fù)數(shù)相等建立方程組即可.【詳解】設(shè),則,所以,解得,故,復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,在第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,涉及到共軛復(fù)數(shù)的定義、復(fù)數(shù)的模等知識(shí),考查學(xué)生的基本計(jì)算能力,是一道容易題.5A【解析】根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點(diǎn)睛】本題考查集合的交,注意根據(jù)交集

7、的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.6B【解析】設(shè)正四面體的棱長(zhǎng)為,建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),求出面的法向量,設(shè)的坐標(biāo),求出向量,求出線面所成角的正弦值,再由角的范圍,結(jié)合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標(biāo)的關(guān)系,進(jìn)而求出正切值【詳解】由題意設(shè)四面體的棱長(zhǎng)為,設(shè)為的中點(diǎn),以為坐標(biāo)原點(diǎn),以為軸,以為軸,過(guò)垂直于面的直線為軸,建立如圖所示的空間直角坐標(biāo)系,則可得,取的三等分點(diǎn)、如圖,則,所以、,由題意設(shè),和都是等邊三角形,為的中點(diǎn),平面,為平面的一個(gè)法向量,因?yàn)榕c平面所成角為定值,則,由題意可得,因?yàn)榈能壽E為一段拋物線且為定值,則也為定值,可得,此時(shí),則,.故

8、選:B.【點(diǎn)睛】考查線面所成的角的求法,及正切值為定值時(shí)的情況,屬于中等題7A【解析】分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值. 詳解:由得到,故無(wú)解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來(lái)求解.8C【解析】由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,利用正弦定理求出底面三角形外接圓

9、的半徑,根據(jù)三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個(gè)三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長(zhǎng)為,如圖:由底面邊長(zhǎng)可知,底面三角形的頂角為,由正弦定理可得,解得, 三棱柱的兩底面中心連線的中點(diǎn)就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點(diǎn)睛】本題考查了多面體的內(nèi)切球與外接球問(wèn)題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.9B【解析】根據(jù)函數(shù)單調(diào)性逐項(xiàng)判斷即可【詳解】對(duì)A,由正弦函數(shù)的單調(diào)性知sina與sinb大小不確定,故錯(cuò)誤;對(duì)B,因?yàn)閥cx為增函數(shù),

10、且ab,所以cacb,正確對(duì)C,因?yàn)閥xc為增函數(shù),故 ,錯(cuò)誤;對(duì)D, 因?yàn)樵跒闇p函數(shù),故 ,錯(cuò)誤故選B【點(diǎn)睛】本題考查了不等式的基本性質(zhì)以及指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題10A【解析】用排除B,C;用排除;可得正確答案.【詳解】解:當(dāng)時(shí),所以,故可排除B,C;當(dāng)時(shí),故可排除D故選:A【點(diǎn)睛】本題考查了函數(shù)圖象,屬基礎(chǔ)題11B【解析】先根據(jù)題意,對(duì)原式進(jìn)行化簡(jiǎn)可得,然后利用累加法求得,然后不等式恒成立轉(zhuǎn)化為恒成立,再利用函數(shù)性質(zhì)解不等式即可得出答案.【詳解】由題,即 由累加法可得: 即對(duì)于任意的,不等式恒成立即 令 可得且即 可得或故選B【點(diǎn)睛】本題主要考查了數(shù)列的通項(xiàng)的求法以及函數(shù)的性質(zhì)的運(yùn)用,

11、屬于綜合性較強(qiáng)的題目,解題的關(guān)鍵是能夠由遞推數(shù)列求出通項(xiàng)公式和后面的轉(zhuǎn)化函數(shù),屬于難題.12B【解析】根據(jù)古典概型的概率求法,先得到從八卦中任取兩卦基本事件的總數(shù),再找出這兩卦的六根線中恰有四根陰線的基本事件數(shù),代入公式求解.【詳解】從八卦中任取兩卦基本事件的總數(shù)種,這兩卦的六根線中恰有四根陰線的基本事件數(shù)有6種,分別是(巽,坤),(兌,坤),(離,坤),(震,艮),(震,坎),(坎,艮),所以這兩卦的六根線中恰有四根陰線的概率是.故選:B【點(diǎn)睛】本題主要考查古典概型的概率,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】項(xiàng)和轉(zhuǎn)化可得,討論是否滿

12、足,分段表示即得解【詳解】當(dāng)時(shí),由已知,可得,故,由-得,顯然當(dāng)時(shí)不滿足上式,故答案為:【點(diǎn)睛】本題考查了利用求,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算,分類討論的能力,屬于中檔題.145 【解析】 ,即的最大值為15證明見(jiàn)解析【解析】試題分析:四點(diǎn)共圓,所以,又,所以,即,得證試題解析:A連接,因?yàn)闉閳A的直徑,所以,又,則四點(diǎn)共圓,所以又,所以,即,16【解析】由題意畫(huà)出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為,數(shù)形結(jié)合即可得到的最值,即可得解.【詳解】由題意畫(huà)出可行域,如圖:轉(zhuǎn)化目標(biāo)函數(shù)為,通過(guò)平移直線,數(shù)形結(jié)合可知:當(dāng)直線過(guò)點(diǎn)A時(shí),直線截距最大,z最小;當(dāng)直線過(guò)點(diǎn)C時(shí),直線截距最小,z最大.由可得,由可得

13、,當(dāng)直線過(guò)點(diǎn)時(shí),;當(dāng)直線過(guò)點(diǎn)時(shí),所以.故答案為:.【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17(1) (2)證明見(jiàn)解析;定點(diǎn)坐標(biāo)為【解析】(1)由條件直接算出即可(2)由得,由可得,同理,然后由推出即可【詳解】(1)由題有,.,.橢圓方程為.(2)由得,.又,同理又,此時(shí)滿足直線恒過(guò)定點(diǎn)【點(diǎn)睛】涉及橢圓的弦長(zhǎng)、中點(diǎn)、距離等相關(guān)問(wèn)題時(shí),一般利用根與系數(shù)的關(guān)系采用“設(shè)而不求”“整體帶入”等解法.18(1);(2).【解析】(1)方程的兩根為,由題意得,在利用等差數(shù)列的通項(xiàng)公式即可得出;(2)利用“錯(cuò)位相減法”、

14、等比數(shù)列的前項(xiàng)和公式即可求出【詳解】方程x25x60的兩根為2,3.由題意得a22,a43.設(shè)數(shù)列an的公差為d,則a4a22d,故d,從而得a1.所以an的通項(xiàng)公式為ann1.(2)設(shè)的前n項(xiàng)和為Sn,由(1)知,則Sn,Sn,兩式相減得Sn,所以Sn2.考點(diǎn):等差數(shù)列的性質(zhì);數(shù)列的求和【方法點(diǎn)晴】本題主要考查了等差數(shù)列的通項(xiàng)公式、“錯(cuò)位相減法”、等比數(shù)列的前項(xiàng)和公式、一元二次方程的解法等知識(shí)點(diǎn)的綜合應(yīng)用,解答中方程的兩根為,由題意得,即可求解數(shù)列的通項(xiàng)公式,進(jìn)而利用錯(cuò)位相減法求和是解答的關(guān)鍵,著重考查了學(xué)生的推理能力與運(yùn)算能力,屬于中檔試題19x【解析】由題知,|x1|x2|恒成立,故|x

15、1|x2|不大于的最小值|ab|ab|abab|2|a|,當(dāng)且僅當(dāng)(ab)(ab)0時(shí)取等號(hào),的最小值等于2.x的范圍即為不等式|x1|x2|2的解,解不等式得x.20(1)(2)是定值,且定值為2【解析】(1)設(shè)出點(diǎn)坐標(biāo)并代入橢圓方程,根據(jù)列方程,求得的值,結(jié)合求得的值,進(jìn)而求得橢圓的方程.(2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓方程,求得點(diǎn)的橫坐標(biāo),聯(lián)立直線的方程和橢圓方程,求得,由此化簡(jiǎn)求得為定值.【詳解】(1)已知點(diǎn)在橢圓:()上,可設(shè),即,又,且,可得橢圓的方程為.(2)設(shè)直線的方程為:,則直線的方程為.聯(lián)立直線與橢圓的方程可得:,由,可得,聯(lián)立直線與橢圓的方程可得:,即,即.即為定值,且定值為2.【點(diǎn)睛】本小題主要考查本小題主要考查橢圓方程的求法,考查橢圓中的定值問(wèn)題的求解,考查直線和橢圓的位置關(guān)系,考查運(yùn)算求解能力,屬于中檔題.21(1); (2).【解析】(1)當(dāng)時(shí),當(dāng)時(shí),令,即,解得,當(dāng)時(shí),顯然成立,所以,當(dāng)時(shí),令,即,解得,綜上所述,不等式的解集為(2)因?yàn)椋驗(yàn)椋谐闪ⅲ灾恍瑁獾茫詀的取值范圍為【點(diǎn)睛】絕對(duì)值不等式的解法:法一:利用絕對(duì)值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點(diǎn)分段

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論