人教版八年級數學上冊知識點預習_第1頁
人教版八年級數學上冊知識點預習_第2頁
人教版八年級數學上冊知識點預習_第3頁
人教版八年級數學上冊知識點預習_第4頁
人教版八年級數學上冊知識點預習_第5頁
免費預覽已結束,剩余28頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、2017年人教版八年級上冊數學知識點總結歸納第十一章三角形第十二章全等三角形第十三章軸對稱第十四章整式乘法和因式分解第十五章分式第十一章 三角形1、三角形的概念由不在同意直線上的三條線段首尾順次相接所組成的圖形叫做 三角形。組成三角形的線段叫做三角形的邊;相鄰兩邊的公共端 點叫做三角形的頂點;相鄰兩邊所組成的角叫做三角形的內角, 簡稱三角形的角。2、三角形中的主要線段(1)三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點間的線段叫做三角形的角平分線。(2)在三角形中,連接一個頂點和它對邊的中點的線段叫做三 角形的中線。(3)從三角形一個頂點向它的對邊做垂線, 頂點和垂足之間的 線段

2、叫做三角形的高線(簡稱三角形的高)。3、三角形的穩定性三角形的形狀是固定的,三角形的這個性質叫做三角形的穩定 性。三角形的這個性質在生產生活中應用很廣,需要穩定的東西 一般都制成三角形的形狀。4、三角形的特性與表示三角形有下面三個特性:(1)三角形有三條線段1t(2)三條線段不在同直線上三角形是封閉圖形(3)首尾順次相接三角形用符號“a”表示,頂點是A、B、C的三角形記作“aABC, 讀作“三角形ABC。5、三角形的分類三角形按邊的關系分類如下:'不等邊三角形三角形 4r底和腰不相等的等腰三角形、等腰三角形 ,I等邊三角形三角形按角的關系分類如下:產角三角形(有一個角為直角的三角形)三

3、角形 tr銳角三角形(三個角都是銳角的三角形).斗三角形鈍角三角形(有一個角為鈍角的三角形)把邊和角聯系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。6、三角形的三邊關系定理及推論(1)三角形三邊關系定理:三角形的兩邊之和大于第三邊。推論:三角形的兩邊之差小于第三邊。(2)三角形三邊關系定理及推論的作用:判斷三條已知線段能否組成三角形當已知兩邊時,可確定第三邊的范圍。證明線段不等關系。7、三角形的內角和定理及推論三角形的內角和定理:三角形三個內角和等于180°。推論:直角三角形的兩個銳角互余。三角形的一個外角等于和它不相鄰的來兩個內角的和。三角形的

4、一個外角大于任何一個和它不相鄰的內角。注:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。8、三角形的面積=1底高2多邊形知識要點梳理定義:由三條或三條以上的線段首位順次連接所組成 的封閉圖形叫做多邊形。凸多邊形多邊形 分類1: ,凹多邊形產多邊形:各邊相等,各角也相等的多邊形分類2:J叫做正多邊形。正多邊形:1、n邊形的內角和等于180° (n-2)。多邊形的定理 2、任意凸形多邊形的外角和等于 360°。31、n邊形的對角線條數等于1/2 n (n-3)j只用一種正多邊形:3、4、6/。鑲嵌拼成360度的角:只用一種非正多邊形(全等):3、4。知識點一

5、:多邊形及有關概念1、多邊形的定義:在平面內,由一些線段首尾順次相接組 成的圖形叫做多邊形.(1)多邊形的一些要素:邊:組成多邊形的各條線段叫做多邊形的邊.頂點:每相鄰兩條邊的公共端點叫做多邊形的頂點.內角:多邊形相鄰兩邊組成的角叫多邊形的內角,一個n邊形有n個內角。外角:多邊形的邊與它的鄰邊的延長線組成的角叫做多 邊形的外角。(2)在定義中應注意:一些線段(多邊形的邊數是大于等于 3的正整數); 首尾順次相連,二者缺一不可;理解時要特別注意“在同一平面內”這個條件 ,其目 的是為了排除幾個點不共面的情況,即空間多邊形.2、多邊形的分類:(1)多邊形可分為凸多邊形和凹多邊形,畫出多邊形的任何一

6、 條邊所在的直線,如果整個多邊形都在這條直線的同一側,則此 多邊形為凸多邊形,反之為凹多邊形(見圖1).本章所講的多邊形都是指凸多邊形.圖1(2)多邊形通常還以邊數命名,多邊形有n條邊就叫做n邊 形.三角形、四邊形都屬于多邊形,其中三角形是邊數最少的多 邊形.知識點二:正多邊形各個角都相等、各個邊都相等的多邊形叫做正多邊形。如正 三角形、正方形、正五邊形等。正三角形正方形正五邊形正六邊形正十二邊形要點詮釋:各角相等、各邊也相等是正多邊形的必備條件,二者缺一不 可.如四條邊都相等的四邊形不一定是正方形,四個角都相等的 四邊形也不一定是正方形,只有滿足四邊都相等且四個角也都相 等的四邊形才是正方形

7、知識點三:多邊形的對角線多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫 做多邊形的對角線.如圖2, BD為四邊形ABCD勺一條對角線。 要點詮釋:(1)從n邊形一個頂點可以引(n3)條對角線,將多邊形分成 (n 2)個三角形。a(2)n邊形共有2 條對角線。證明:過一個頂點有n 3條對角線(n >3的正整 I一E圖2f數),又二.共有n個頂點,共有n(n-3)條對角線,但過兩個不相鄰頂點的對角線重復了一次,凸n邊形,共有2條對角線。知識點四:多邊形的內角和公式1 .公式:邊形的內角和為(«-2)180'(«>3).2 .公式的證明:證法1:在村邊形

8、內任取一點,并把這點與各個頂點連接起來, 共構成為個三角形,這個三角形的內角和為切80二再減去一個 周角,即得到打邊形的內角和為何一2)1807證法2:從71邊形一個頂點作對角線,可以作 何一3條對角 線,并且為邊形被分成仇-2)個三角形,這(加一2)個三角形內角 和恰好是打邊形的內角和,等于(*-2)81.證法3:在以邊形的一邊上取一點與各個頂點相連,得 .一1) 個三角形,打邊形內角和等于這a-1)個三角形的內角和減去所 取的一點處的一個平角的度數,即1力1附-181二("2”8。.要點詮釋:(1)注意:以上各推導方法體現出將多邊形問題轉化為三角形 問題來解決的基礎思想。(2)內

9、角和定理的應用:已知多邊形的邊數,求其內角和;已知多邊形內角和,求其邊數。知識點五:多邊形的外角和公式1 .公式:多邊形的外角和等于 360° .2 .多邊形外角和公式的證明:多邊形的每個內角和與它相鄰 的外角都是鄰補角,所以總邊形的內角和加外角和為“18,外角 和等于知80yz那=36注意:n邊形的外角和恒等于360° ,它與邊數的多少無關。 要點詮釋:(1)外角和公式的應用:已知外角度數,求正多邊形邊數;已知正多邊形邊數,求外角度數.(2)多邊形的邊數與內角和、外角和的關系:n邊形的內角和等于(n2) 180° (n>3, n是正整數),可 見多邊形內角

10、和與邊數n有關,每增加1條邊,內角和增加180°。多邊形的外角和等于360° ,與邊數的多少無關。知識點六:鑲嵌的概念和特征1、定義:用一些不重疊擺放的多邊形把平面的一部分完全覆 蓋,通常把這類問題叫做用多邊形覆蓋平面 (或平面鑲嵌)。這里 的多邊形可以形狀相同,也可以形狀不相同。2、實現鑲嵌的條件:拼接在同一點的各個角的和恰好等于 360° ;相鄰的多邊形有公共邊。3、常見的一些正多邊形的鑲嵌問題:(1)用正多邊形實現鑲嵌的條件:邊長相等;頂點公用;在一 個頂點處各正多邊形的內角之和為 3600 o(2)只用一種正多邊形鑲嵌地面對于給定的某種正多邊形,怎樣判斷它

11、能否拼成一個平面圖形,且不留一點空隙?解決問題的關鍵在于正多邊形的內角特點 當圍繞一點拼在一起的幾個正多邊形的內角加在一起恰好組成一 個周角360°時,就能鋪成一個平面圖形。5 - 2) 180。事實上,正n邊形的每一個內角為 修 ,要求k個正n 邊形各有一個內角拼于一點,恰好覆蓋地面,這樣360。=悔-2)80。2卷4n ,由此與出k=2=2十四-2,而k是正整數,所以n只能取3,4, 6。因而,用相同的正多邊形地磚鋪地面,只有 正三角形、正方形、正六邊形的地磚可以用。注意:任意四邊形的內角和 都等于3600 o所以用一批形狀、 大小完全相同但不規則的四邊 形地磚也可以鋪成無空隙的

12、地 板,用任意相同的三角形也可以 鋪滿地面。(3)用兩種或兩種以上的正 多邊形鑲嵌地面用兩種或兩種以上邊長相等的正多邊形組合成平面圖形,關 鍵是相關正多邊形“交接處各角之和能否拼成一個周角”的問題。 例如,用正三角形與正方形、正三角形與正六邊形、正三角形與 正十二邊形、正四邊形與正八邊形都可以作平面鑲嵌,見下圖:又如,用一個正三角形、兩個正方形、一個正六邊形結合在 一起恰好能夠鋪滿地面,因為它們的交接處各角之和恰好為一個 周角360°。規律方法指導1 .內角和與邊數成正比:邊數增加,內角和增加;邊數減少, 內角和減少.每增加一條邊,內角的和就增加 180° (反過來也 成立

13、),且多邊形的內角和必須是180°的整數倍.2 .多邊形外角和等于360° ,與邊數的多少無關.3 .多邊形最多有三個內角為銳角,最少沒有銳角(如矩形); 多邊形的外角中最多有三個鈍角,最少沒有鈍角.4 .在運用多邊形的內角和公式與外角的性質求值時,常與方程思想相結合,運用方程思想是解決本節問題的常用方法.5 .在解決多邊形的內角和問題時,通常轉化為與三角形相關 的角來解決.三角形是一種基本圖形,是研究復雜圖形的基礎, 同時注意轉化思想在數學中的應用.經典例題透析類型一:多邊形內角和及外角和定理應用01 .一個多邊形的內角和等于它的外角和的 5倍,它是幾邊形? 總結升華:本

14、題是多邊形的內角和定理和外角和定理的綜合運用.只要設出邊數R ,根據條件列出關于月的方程,求出力的 值即可,這是一種常用的解題思路.舉一反三:【變式1】若一個多邊形的內角和與外角和的總度數為 18000 , 求這個多邊形的邊數.【變式2】一個多邊形除了一個內角外,其余各內角和為2750° , 求這個多邊形的內角和是多少?【答案】設這個多邊形的邊數為L這個內角為f,【變式3】一個多邊形的內角和與某一個外角的度數總和為1350° ,求這個多邊形的邊數。類型二:多邊形對角線公式的運用【變式1】一個多邊形共有20條對角線,則多邊形的邊數是().A. 6 B. 7 C. 8D. 9【

15、變式2】一個十二邊形有幾條對角線??偨Y升華:對于一個n邊形的對角線的條數,我們可以總結- 3)出規律 F條,牢記這個公式,以后只要用相應的 n的值代入 即可求出對角線的條數,要記住這個公式只有在理解的基礎之上 才能記得牢。類型三:可轉化為多邊形內角和問題【變式11如圖所示,/ 5+/ 6=/ 1 + /2+/3+/ 4+【變式2】如圖所示,求/ A + / B+ ZC+ / D+ / E+ / F 的度 數。類型四:實際應用題4.如圖,一輛小汽車從P市出發, 先到B市,再到C市,再到A市,最后返 回P市,這輛小汽車共轉了多少度角?思路點撥:根據多邊形的外角和定理 解決.舉一反三:【變式1】如圖

16、所示,小亮從A點出發前進10ml向右轉15。 再前進10ml又向右轉15° ,,這樣一直走下去,當他第一次 回到出發點時,一共走了 m.【變式2】小華從點A出發向前走10米,向右轉36° 然后繼續向前走10米,再向右轉36° ,他以同樣的方法繼續走 下去,他能回到點A嗎?若能,當他走回點 A時共走了多少米? 若不能,寫出理由。RD【變式3】如圖所示是某廠生一、 /產的一塊模板,已知該模板的邊AB/CF, CD/ AE.按規定 AR CD的延長線相交成80°角,因交點不在模板上,不便測量.這時師傅告訴徒 弟只需測一個角,便知道AB CD的延長線的夾角是否合

17、乎規定, 你知道需測哪一個角嗎?說明理由.思路點撥:本題中將AB CD延長后會得到一個五邊形,根據 五邊形內角和為540° ,又由AB/1 CF, CD/ AE,可知/ BAE吆AEF+ /EFC=360 ,從5400中減去80°再減去360° ,剩下/ C的度 數為100° ,所以只需測/ C的度數即可,同理還可直接測/ A的 度數.總結升華:本題實際上是多邊形內角和的逆運算,關鍵在于 正確添加輔助線.類型五:鑲嵌問題的5.分別畫出用相同邊長的下列正多邊形組合鋪滿地面的設計圖(1)正方形和正八邊形;(2)正三角形和正十二邊形;(3)正三角形、正方形和正

18、六 邊形。思路點撥:只要在拼接處各多邊形的內角的和能構成一個周 角,那么這些多邊形就能作平面鑲嵌。解析:正三角形、正方形、正六邊形、正八邊形、正十 二邊形的每一個內角分別是 60°、90°、120°、135°、150°。(1)因為90 + 2X 135=360,所以一個頂點處有1個正方 形、2個正八邊形,如圖(1)所示。(2)因為60 + 2X 150=360,所以一個頂點處有1個正三 角形、2個正十二邊形,如圖(2)所示。(3)因為60 + 2X90+120=360,所以一個頂點處有1個 正三角形、1個正六邊形和2個正方形,如圖(3)所示???/p>

19、結升華:用兩種以上邊長相等的正多邊形組合成平面 圖形,實質上是相關正多邊形“交接處各角之和能否拼成一個周 角”的問題。舉一反三:【變式1】分別用形狀、大小完全相同的三角形木板; 四邊形木板;正五邊形木板;正六邊形木板作平面鑲嵌,其 中不能鑲嵌成地板的是()A、B、C、R解析:用同一種多邊形木板鋪地面,只有正三角形、四邊形、 正六邊形的木板可以用,不能用正五邊形木板,故【變式2】用三塊正多邊形的木板鋪地,拼在一起并相交于 一點的各邊完全吻合,其中兩塊木板的邊數都是8,則第三塊木板的邊數應是()A 4B、5C 6D 8【答案】A (提示:先算出正八邊形一個內角的度數, 再乘以2,然后用360。減去

20、剛才得到的積,便得到第三塊木板一 個內角的度數,進而得到第三塊木板的邊數)練習1 .多邊形的一個內角的外角與其余內角的和為6000 ,求這個多邊形的邊數.2 . n邊形的內角和與外角和互比為 13: 2,求n.3 .五邊形ABCDE勺各內角者口相等,且 AE= DE AD/ CB嗎?4 .將五邊形砍去一個角,得到的是怎樣的圖形?5 .四邊形 ABCM, /A+/ B=210° , Z C= 4/D,求:/ C或/ D 的度數.6,在四邊形 ABCM, AB= AC= AR / DAC= 2/BAC 求證:/ DBC= 2/ BDC第十二章全等三角形一、全等三角形能夠完全重合的兩個三角

21、形叫做全等三角形。一個三角形經過平移、翻折、旋轉可以得到它的全等形。2、全等三角形有哪些性質(1):全等三角形的對應邊相等、對應角相等。(2):全等三角形的周長相等、面積相等。(3):全等三角形的對應邊上的對應中線、角平分線、高線分別 相等。3、全等三角形的判定邊邊邊:三邊對應相等的兩個三角形全等(可簡寫成“SS6 )邊角邊:兩邊和它們的夾角對應相等兩個三角形全等(可簡寫成“SA6 )角邊角:兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成"ASA )角角邊:兩角和其中一角的對邊對應相等的兩個三角形全等(可簡寫成“AAS )斜邊.直角邊:斜邊和一條直角邊對應相等的兩個直角三角形全等

22、(可簡寫成" HL')4、證明兩個三角形全等的基本思路:二、角的平分線:1、(性質)角的平分線上的點到角的兩邊的距離相等 .2、(判定)角的內部到角的兩邊的距離相等的點在角的平分線上。三、學習全等三角形應注意以下幾個問題:(1):要正確區分“對應邊”與“對邊”,“對應角”與 “對角”的不同含義;(2):表示兩個三角形全等時,表示對應頂點的字母要寫在對應的位置上;(3): “有三個角對應相等”或“有兩邊及其中一邊的對角對應相等”的兩個三角形不一定全等;(4):時刻注意圖形中的隱含條件,如“公共角”、“公共邊”、“對頂角”1 、全等三角形的概念能夠完全重合的兩個圖形叫做全等形。能

23、夠完全重合的兩個三角形叫做全等三角形。兩個三角形全等時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊, 互相重合的角叫做對應角。夾邊就是三角形中相鄰兩角的公共邊, 夾角就是三角形中有公共端點的兩邊所成的角。2、全等三角形的表示和性質全等用符號 W 表示,讀作“全等于"。如4AB笛ADEIF讀 作“三角形ABC全等于三角形DEF。注:記兩個全等三角形時,通常把表示對應頂點的字母寫在對 應的位置上。3、三角形全等的判定三角形全等的判定定理:(1)邊角邊定理:有兩邊和它們的夾角對應相等的兩個三角形全等(可簡寫成“邊角邊”或" SA6)(2)角邊角定理:有兩角和它們的夾邊對應

24、相等的兩個三角形 全等(可簡寫成“角邊角”或“ AS&)(3)邊邊邊定理:有三邊對應相等的兩個三角形全等(可簡寫 成“邊邊邊”或" SS6)。直角三角形全等的判定:對于特殊的直角三角形,判定它們全等時,還有HL定理(斜邊、 直角邊定理):有斜邊和一條直角邊對應相等的兩個直角三角形全 等(可簡寫成“斜邊、直角邊”或“ HL”)4、全等變換只改變圖形的位置,二不改變其形狀大小的圖形變換叫做全等 變換。全等變換包括一下三種:(1)平移變換:把圖形沿某條直線平行移動的變換叫做平移變 換。(2)對稱變換:將圖形沿某直線翻折180° ,這種變換叫做對 稱變換。(3)旋轉變換:將

25、圖形繞某點旋轉一定的角度到另一個位置, 這種變換叫做旋轉變換。第十二章軸對稱一、軸對稱圖形1 .把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全 重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱 軸。這時我們也說這個圖形關于這條直線(成軸)對稱。2 .把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完 全重合,那么就說這兩個圖關于這條直線對稱。這條直線叫做對 稱軸。折疊后重合的點是對應點,叫做對稱點3、知聯螂螂形和軸對稱的區別與聯系3、軸對稱圖形和軸對稱的區別與聯系軸對稱圖形軸:特稱圖形/ /JBACA f h nBCA K C區別(1)軸對稱圖形關 具有特殊形, 只對(一價(

26、2)對稱軸不)l指(一個 伏的圖形, - 圖形向百 定只有一條(1)軸對稱是指 的位置關系 (兩小(2)只有(一滌(網)個圖形,必須涉及 圖形;-對稱軸.聯系如果把軸對稱圖形沿對稱軸 分成兩部分,那么這兩個圖形 就關于這條直線成軸對稱.如果把兩個成軸對稱的圖形 拼在T看成一個整體,那 么它就是一個軸對稱圖形.4.軸對稱的性質關于某直線對稱的兩個圖形是全等形。如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對 對應點所連線段的垂直平分線。軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直 平分線。如果兩個圖形的對應點連線被同條直線垂直平分,那么這 兩個圖形關于這條直線對稱。二、線段的垂直平分線1

27、.經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。2 .線段垂直平分線上的點與這條線段的兩個端點的距離相等3 .與一條線段兩個端點距離相等的點,在線段的垂直平分線上 三、用坐標表示軸對稱小結: 在平面直角坐標系中,關于x軸對稱的點橫坐標相等,縱坐標互為 相反數.關于y軸對稱的點橫坐標互為相反數,縱坐標相等.點(x, y )關于x軸對稱的點的坐標為 .點(x, y )關于y軸對稱的點的坐標為 .2.三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等四、(等腰三角形)知識點回顧1 .等腰三角形的性質 .等腰三角形的兩個底角相等。(等邊對等角) .等腰三

28、角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)2、等腰三角形的判定:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)五、(等邊三角形)知識點回顧1.等邊三角形的性質:等邊三角形的三個角都相等,并且每一個角都等于600。2、等邊三角形的判定:三個角都相等的三角形是等邊三角形。有一個角是600的等腰三角形是等邊三角形。3.在直角三角形中,如果一個銳角等于300,那么它所對的直角邊 等于斜邊的一半。1、等腰三角形的性質(1)等腰三角形的性質定理及推論:定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即 等腰

29、三角形的頂角平分線、底邊上的中線、底邊上的高重合。推論2:等邊三角形的各個角都相等,并且每個角都等于60。(2)等腰三角形的其他性質:等腰直角三角形的兩個底角相等且等于 45。等腰三角形的底角只能為銳角, 不能為鈍角(或直角),但頂 角可為鈍角(或直角)。等腰三角形的三邊關系:設腰長為 a,底邊長為b,則:a等腰三角形的三角關系:設頂角為頂角為/ A,底角為/ B、/C,貝【J/A=180° 2/B, /B=/ C=180 - A22、等腰三角形的判定等腰三角形的判定定理及推論:定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊 也相等(簡稱:等角對等邊)。這個判定定理常用于證明

30、同一個三 角形中的邊相等。推論1:三個角都相等的三角形是等邊三角形推論2:有一個角是60°的等腰三角形是等邊三角形。推論3:在直角三角形中,如果一個銳角等于 30。,那么它所 對的直角邊等于斜邊的一半。等腰三角形的性質與判定等腰三角形性質等腰三角形判定中 線1、等腰三角形底邊上的 中線垂直底邊,平分 頂角;1、兩邊上中線相等的三 角形是等腰三角形;2、如果一個三角形的一2、等腰三角形兩腰上的 中線相等,并且它們 的交點與底邊兩端點 距離相等。邊中線垂直這條邊 (平分這個邊的對 角),那么這個三角 形是等腰三角形角 平 分 線1、等腰三角形頂角平分 線垂直平分底邊;2、等腰三角形兩底角

31、平 分線相等,并且它們 的交點到底邊兩端點 的距離相等。1、如果三角形的頂角平 分線垂直于這個角 的對邊(平分對邊), 那么這個三角形是 等腰三角形;2、三角形中兩個角的平 分線相等,那么這個 三角形是等腰三角 形。高 線1、等腰三角形底邊上的 高平分頂角、平分底 邊;2、等腰三角形兩腰上的 高相等,并且它們的 交點和底邊兩端點距 離相等。1、如果一個三角形一邊 上的高平分這條邊(平分這條邊的對 角),那么這個三角 形是等腰三角形;2、有兩條高相等的三角 形是等腰三角形。角等邊對等角等角對等邊邊底的一半腰長周長的 一半兩邊相等的三角形是等 腰三角形4、三角形中的中位線連接三角形兩邊中點的線段叫

32、做三角形的中位線(1)三角形共有三條中位線,并且它們又重新構成一個新的三 角形。(2)要會區別三角形中線與中位線。三角形中位線定理:三角形的中位線平行于第三邊,并且等于 它的一半。三角形中位線定理的作用:位置關系:可以證明兩條直線平行。數量關系:可以證明線段的倍分關系。常用結論:任一個三角形都有三條中位線,由此有:結論1:三條中位線組成一個三角形,其周長為原三角形周長 的一半。結論2:三條中位線將原三角形分割成四個全等的三角形。結論3:三條中位線將原三角形劃分出三個面積相等的平行四 邊形。結論4:三角形一條中線和與它相交的中位線互相平分。結論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形

33、 的頂角相等。第十四章整式乘除與因式分解一.回顧知識點1、主要知識回顧:哥的運算性質:am - an=a"n(m n 為正整數)同底數募相乘,底數不變,指數相加.n后)=amn (n為正整數)嘉的乘方,底數不變,指數相乘. n _ n n(ab) = a b(n為正整數)積的乘方等于各因式乘方的積.am * an = am"n(aw0, m n 都是正整數,且 m>n)同底數哥相除,底數不變,指數相減.零指數曷的概念:a°= 1(aw0)任何一個不等于零的數的零指數哥都等于 l.負指數曷的概念:1a p= ap(aw°, p是正整數)任何一個不等于

34、零的數的-p (p是正整數)指數曷,等于這 個數的p指數曷的倒數.z nm p也可表示為: m ) nn ) (m5°, nw°, p為正整數)單項式的乘法法則:單項式相乘,把系數、同底數哥分別相乘,作為積的因式;對于 只在一個單項式里含有的字母,則連同它的指數作為積的一個因 式.單項式與多項式的乘法法則:單項式與多項式相乘,用單項式和多項式的每一項分別相乘, 再把所得的積相加.多項式與多項式的乘法法則:多項式與多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.單項式的除法法則:單項式相除,把系數、同底數得分別相除,作為商的因式:對于 只在被除

35、式里含有的字母,則連同它的指數作為商的一個因式.多項式除以單項式的法則:多項式除以單項式,先把這個多項式的每一項除以這個單項 式,再把所得的商相加.2、乘法公式:平方差公式:(a+b) (ab) =a2b2文字語言敘述:兩個數的和與這兩個數的差相乘,等于這兩 個數的平方差.完全平方公式:(a+b) 2=a2 + 2ab+b2(ab) 2=a2 2ab+b2文字語言敘述:兩個數的和(或差)的平方等于這兩個數的平方和加上(或減去)這兩個數的積的 2倍.3、因式分解:因式分解的定義.把一個多項式化成幾個整式的乘積的形式,這種變形叫做把這個多項式因式分解.掌握其定義應注意以下幾點:(1)分解對象是多項

36、式,分解結果必須是積的形式,且積的 因式必須是整式,這三個要素缺一不可;(2)因式分解必須是恒等變形;(3)因式分解必須分解到每個因式都不能分解為止.弄清因式分解與整式乘法的內在的關系.因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.二、熟練掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的關鍵是找出公因式,公因式的構成一般情 況下有三部分:系數一各項系數的最大公約數;字母一一各 項含有的相同字母;指數一一相同字母的最低次數;(3)提公因式法的步驟:第一步是找出公因式;第二步是提 取公因式并確定另一因式.需注意的是,

37、提取完公因式后,另一 個因式的項數與原多項式的項數一致,這一點可用來檢驗是否漏 項.(4)注意點:提取公因式后各因式應該是最簡形式,即分 解到“底”;如果多項式的第一項的系數是負的,一般要提出“一 號,使括號內的第一項的系數是正的.2、公式法運用公式法分解因式的實質是把整式中的乘法公式反過來使用;常用的公式:平方差公式:a 2 b2= (a+b) (ab)完全平方公式:a2+2ab+b2= (a+b) 2a2-2ab+b2= (ab) 23.十字相乘法第十五章分式知識點一:分式的定義一般地,如果A, B表示兩個整數,并且B中含有字母,那么式子AB叫做分式,A為分子,B為分母。知識點二:與分式有

38、關的條件分式有意義:分母不為0 (b#0)分式無意義:分母為0 (b=0)A = 0分式值為0:分子為0且分母不為0 (IB'0 )A 0 A 0分式值為正或大于0:分子分母同號(18>0或田<0)A 0 A 0分式值為負或小于0:分子分母異號(2<0或小>0)分式值為1:分子分母值相等(A=B)分式值為-1 :分子分母值互為相反數(A+B=0知識點三:分式的基本性質分式的分子和分母同乘(或除以)一個不等于0的整式,分式的值不變。A 二 A C A 二 A C字母表示:B BC , B B-C ,其中A、B、C是整式,C 0 拓展:分式的符號法則:分式的分子、分

39、母與分式本身的符號, 改變其中任何兩個,分式的值不變,即A - A - A AB - B B - B注意:在應用分式的基本性質時,要注意 C0這個限制條件和隱含條件B = 0O知識點四:分式的約分定義:根據分式的基本性質,把一個分式的分子與分母的公因式 約去,叫做分式的約分。步驟:把分式分子分母因式分解,然后約去分子與分母的公因。 注意:分式的分子與分母為單項式時可直接約分,約去分子、 分母系數的最大公約數,然后約去分子分母相同因式的最低次募。分子分母若為多項式,約分時先對分子分母進行因式分解,再約分。知識點四:最簡分式的定義一個分式的分子與分母沒有公因式時,叫做最簡分式。知識點五:分式的通分 分式的通分:根據分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母分式,叫做分 式的通分。 分式的通分最主要的步驟是最簡公分母的確最簡公分母的定義:取各分母所有因式的最高次哥的積作公分母, 這樣的公分母叫做

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論