


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、正數和負數數軸絕對值一、知識概述一正數和負數1、負數的意義負數是由實際的需要而產生的,如:某地氣溫是8C,由于強冷空氣南下,氣溫下降了 12C,那么該地區這時的實際氣溫是 (8 - 12) C,但在算術中這個差是不存在的,實際上這個氣溫是客觀存在 的,為了解決這個“不夠減的矛盾,引入一個新數一一負數,即(812) °C 二4 C,表示零下 4C.2、相反意義的量與正數為了表示具有相反意義的量,把其中一種意義的量規定為正,另 一種與它意義相反的量規定為負,正的量記為“ + ,如+ 6, + 2.5, 叫正數;負的量記做“一,像一4, 6這類帶有負號的數叫負數;“ 0既不是正數,也不是負
2、數,是正數與負數的界限,規定零是最 小的自然數.自然界有許多具有相反意義的量,如上升與下降,向東與向西、 盈余與虧損等都可以用正負數來表示.3、有理數的分類1有理數2有理數4、字母a的意義用字母a表示有理數時:1a>0時,a表示正數,a表示負數;2a<0時,a表示負數,a表示正數.3a> 0時,a表示非負數.二相反數1、相反數的意義1代數意義:只有符號不同的兩個數叫互為相反數,其中一 個數叫另一個數的相反數,0的相反數是0.2幾何意義:在數軸上的原點兩旁,離原點的距離相等的兩 個點所表示的數互為相反數.3相反數的性質:假設a、b兩數互為相反數,那么a+ b = 0, 反之也成
3、立.4符號:在一個數前面加“號表示這個數的相反數,如數a的相反數是a.2、多重符號的化簡化簡帶有多重符號的數的關鍵是結合數軸理解相反數,按由到外的順序去括號,如:一(3)= ( + 3)= 3.三數軸1、數軸的意義數軸是一種特定幾何圖形;原點、正方向、單位長度稱數軸的三 要素,這三者缺一不可.2、數軸的畫法畫一條水平的直線,在這條直線上任取一點作為原點,用這個點 表示0,規定這條直線上從原點向右的方向以箭頭表示為正方向, 相反的方向即從原點向左的方向為負方向,選取某一長度作為單 位長度,就得到了如下列圖的數軸number axis.四絕對值1、絕對值的意義:一個數a的絕對值,就是數軸上表示數
4、a的 點與原點的距離,記作|a|.1絕對值的代數意義是一個正數的絕對值是正數,負數的絕 對值是它的相反數,0的絕對值是0.2絕對值的幾何意義:一個數的絕對值表示的是這個數離開 原點的距離,記做|a|,離原點越遠,數的絕對值越大.3絕對值是非負數,即|a| > 0.互為相反數的兩數絕對值相等: |a|=| - a|.2、絕對值的求法:在處理絕對值符號時,應首先確定絕對值里 面的數的正、負性,假設是非負數,那么直接去掉絕對值符號;假設是負數,那么去掉絕對值符號后,前面加負號,即1 或2有理數的大小比較有理數的加法一、知識概述在學習數軸、相反數、絕對值的根底上進一步穩固這些重要概念; 利用數軸
5、進展兩個或兩個以上的有理數的大小比較.從實際問題探究兩個有理數的加法得到有理數的加法法那么并 會熟練運用.二、重點知識歸納與講解1、利用數軸比較有理數的大小數軸是我們進初中以后學到的一個重要概念, 我們知道有理數均 可以用數軸上的點來表示,結合數軸,還可以更深刻地理解相反數的 意義:從數軸上看,在數軸上原點的兩旁,到原點距離相等的兩個點 所表示的兩個數是互為相反數,其中包含著0的相反數是0的道理.一 個數的絕對值的意義,更離不開“數軸這個工具,我們知道在數軸 上表示數a的點到原點的距離叫做數a的絕對值,因為距離是正數或 0,所以有理數的絕對值是非負數,即|a| >0,利用數軸可以表示相
6、反數和絕對值的幾何意義.我們知道,在數軸上表示的兩個有理數,右邊的數總比左邊的數 大,因此,有理數大小比較的法那么是: 正數都大于零,負數都小于零,正數大于一切負數; 兩個正數,絕對值大的數大; 兩個負數,絕對值大的數反而小.2、有理數的加法法那么1同號兩數相加,取一樣符號,并把絕對值相加;2異號兩數相加,絕對值相等時和為 0;絕對值不相等時, 取絕對值較大的加數符號,并用較大的絕對值減去較小的絕對值.3一個數與0相加,仍得這個數.3、有理數加法步驟分兩步:第一步,確定和的符號;第二步,求和的絕對值.4、利用加法交換律和結合律可以簡化計算 ,通常有以下幾種結 合的方法:1同號的數放在一起相加;
7、2互為相反數的兩個數放在一起;3同分母的分數放在一起;4和為整數的數在一起相加.5、加法的交換律:a+ b=b + a加法的結合律:(a + b) + c=a + (b + c)有理數的減法與加減混合運算一、知識概述1、有理數的減法1有理數的減法法那么減去一個數,等于加上這個數的相反數.這個法那么用式子 可以表示為 a b=a + ( b).2有理數的減法運算有理數的減法,不像算術里那樣直接相減,而是把它轉化為 加法,借助于加法進展計算.因此,掌握有理數減法的關鍵是正確地 將減法轉變為加法.再按有理數的加法法那么計算.注意兩個“變: 改變運算符號;改變減數的性質符號變為相反數,牢記一個 “不變
8、,被減數與減數的位置不能交換,也就是說,減法沒有交換 律.2、有理數的加減混合運算1代數和:幾個正數或負數的和稱代數和,是在代數和里把加號與加號前的括號省去不寫的簡寫形式, 簡寫后的代數和的符號都 是性質符號,而運算符號“ +均已省略.如5 2+ 3 5實際表示 5, 2,+ 3, 5 的和.2有理數加減混合運算的步驟:首先變減為加,再寫成省略 加號的形式,然后利用加法交換律和結合律簡化計算3使用加法交換律交換數的位置時,要連同數前面的符號一 起交換.4利用交換律的結合律進展簡化計算時應遵循幾條法那么: 正數和負數分別結合相加; 分母一樣或易于通分的分數結合相加; 和為整數的結合相加; 互為相
9、反數的結合相加.二、重難點知識1、重點:1能用有理數的減法法那么進展減法運算;2能正確將加減混合運算統一成加法運算.做加減混合運算時要注意:先統一成加法; 省略括號;分類相加.2、難點:在加減混合運算中能正確地運用運算律進展簡便運算有理數的乘法和除法一、知識概述一有理數乘法的法那么與運算律1、有理數的乘法法那么兩數相乘,同號得正,異號得負,并把絕對值相乘;任何數 同零相乘,都得零.幾個有理數相乘的符號確定:幾個不等于零的數相乘,積的符號由負因數的個數決定,當負 因數有奇數個時,積為負;當負因數有偶數個時,積為正 .幾個數相 乘,有一因數為零,積就為零.2、乘法運算律1乘法交換律:兩個數相乘,交
10、換因數的位置,積不變 .即 ab=ba.2乘法結合律:三個數相乘,先把前兩個數相乘,或者先把 后兩個數相乘,積不變.即(ab)c=a(bc).3乘法對加法的分配律:一個數與兩個數的和相乘,等于把 這個數分別與兩個數相乘,再把積相加.即a(b + c)=ab + ac.二有理數的除法法那么1、有理數的除法法那么法那么1:兩數相除,同號得正,異號得負,并把絕對值相除,0除以任何一個不等于0的數都得0;法那么2:除以一個數等于乘以這個數的倒數,0不能作除數.2、倒數的意義乘積是1的兩個數互為倒數,其中一個數是另一個數的倒數,0沒有倒數.倒數的求法:1求一個整數的倒數,直接可寫成這個數分之一,即 a的
11、倒 數為.2求一個分數的倒數,只要將分子、分母顛倒一下即可,即 的倒數為.3求一個帶分數的倒數,應先將帶分數化成假分數,再求倒數.4求一個小數的倒數,應先將小數化成分數,再求倒數 .二、重點知識歸納與講解1、有理數乘法法那么是重點,要準確而熟練地運用 .乘法運算時,先確定積的符號,特別是確定幾個因式乘積的符 號,然后再把各因式的絕對值相乘.帶分數參與乘法運算時,要把帶 分數化成假分數.乘法的交換律、結合律、分配律在有理數的運算中 應用非常廣泛,對簡便運算起很大作用要靈活運用 .2、有理數的除法,給出了兩種形式的法那么,用不同的法那么 計算,所得的商是一樣的,但一般情況下,如果不能整除的,那么選
12、 用“轉化的法那么,即把除法轉化為乘法來計算,能整除的就直接 用除法法那么計算較簡便,熟練運用除法法那么計算也是重點 .3、正確理解倒數的意義.1乘積為1的兩個數互為倒數;2如果兩個數互為倒數,那么它們符號一樣,即正數的倒數是正數,負數的倒數是負數,0沒有倒數.3倒數等于本身的數是士 1.有理數的乘方有理數的混合運算一、知識概述1、有理數的乘方一般地,n個一樣的因數a相乘,即.這種求n個一樣因數的積的運算叫做乘方power.乘方的結果 叫做幕power.在中,a叫做底數(base number) , n叫做指數 (exponent) , an讀作 a的n次幕(或 a的n次方).指數為1時可以省略不寫.2、乘方的性質1正數的任何次幕都是正數.即當a>0時,>0n為正整數;2負數的奇次幕是負數,負數的偶次幕是正數;即當a<0時,30的任何非零次幕都是0;即當a=0時,=0n為正整數;41的任何次幕為1,1的偶次幕為1,1的奇次幕為1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥品采購藥庫管理制度
- 藥店中藥入庫管理制度
- 藥店庫房貨位管理制度
- 論述人力資源管理制度
- 設備創建流程管理制度
- 設備安裝進場管理制度
- 設備施工安全管理制度
- 設備點檢編制管理制度
- 設備維修項目管理制度
- 設備需求清單管理制度
- 2024北京朝陽區五年級(下)期末數學試題及答案
- 《商場促銷活動策劃》課件
- 多模態成像技術在醫學中的應用-全面剖析
- 郭秀艷-實驗心理學-練習題及答案
- 員工測試題目及答案
- 汽車點火考試題及答案
- 2024年湖南學考選擇性考試政治真題及答案
- 《用電飯煲蒸米飯》(教案)-2024-2025學年四年級上冊勞動魯科版
- 公司欠款清賬協議書
- 醫院培訓課件:《十八項核心醫療制度解讀》
- 七年級英語下冊 Unit 1 Can you play the guitar教學設計 (新版)人教新目標版
評論
0/150
提交評論