人教版七年級下冊數學第九章教案小結與復習_第1頁
人教版七年級下冊數學第九章教案小結與復習_第2頁
人教版七年級下冊數學第九章教案小結與復習_第3頁
人教版七年級下冊數學第九章教案小結與復習_第4頁
人教版七年級下冊數學第九章教案小結與復習_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、人教版七年級下冊數學教案第九章小結與復習教學內容: 不等式與不等式組教學目標1.知識與技能能夠根據具體問題中的大小關系了解不等式的意義,并 探索不等式的基本性質。會解簡單的一元一次不等式,并能在數軸上表示出解集。 會解由兩個一元一次不等式組成的不等式組,并會用數軸確 定解集。2.方法與過程能夠根據具體問題中的數量關系,列出一元一次不等式 和一元一次不等式組,解決簡單的實際問題。3.情感、態度與價值觀會運用數形結合、分類等數學思想方法解決問題,會“逆 向”地思考問題,靈活的解答問題 .重點能熟練的解一元一次不等式與一元一次不等式組難點能熟練的解一元一次不等式 (組)并體會數形結合、分類 討論等數

2、學思想。教學過程(一)知識梳理 1.知識結構圖不等式的定義概念不等式的解集基本性質不等式一元一次不等式 的解法不等式的解實際應一元一次不等式組2. 知識點回顧(1)不等式用不等號連接起來的式子叫做不等式常見的不等號有五種: “”、 “> ” 、 “<” 、 “”、 “”(2)不等式的解與解集不等式的解:使不等式成立的未知數的值,叫做不等式 的解不等式的解集:一個含有未知數的不等式的解的全體, 叫做不等式的解集不等式的解集可以在數軸上直觀的表示出來,具體表示 方法是先確定邊界點。解集包含邊界點,是實心圓點;不包 含邊界點,則是空心圓圈;再確定方向:大向右,小向左。Û

3、9; Û說明:不等式的解與一元一次方程的解是有區別的,不 等式的解是不確定的,是一個范圍,而一元一次方程的解則 是一個具體的數值(3)不等式的基本性質A. 不等式的兩邊都加上 ( 或減去 ) 同一個數或同一個整 式不等號的方向不變如果 a>b,則 a+c>b+c,a-c>b-cB.不等式的兩邊都乘以 (或除以)同一個正數,不等號的 方向不變如果 a>b,并且 c>0,那么則 ac>bc(或 a/c>b/c) C.不等式的兩邊都乘以 (或除以)同一個負數,不等號的方向改變如果 a>b,并且 c<0,那么則 ac<bc(或 a/

4、c<b/c) 說明:任意兩個實數 a、b 的大小關系:a-b>O a>b;a-b=O a=b;a-b<O a<b(4)一元一次不等式只含有一個未知數,且未知數的次數是 1系數不等于 0 的不等式叫做一元一次不等式注:一元一次不等式的一般形式是 ax+b>O 或 ax+b<O(a O,a,b 為已知數)。()解一元一次不等式的一般步驟解一元一次不等式的一般步驟:x >a(1) 去分母; (2) 去括號; (3) 移項; (4) 合并同類項; (5)化系數為 1說明:解一元一次不等式和解一元一次方程類似不同 的是:一元一次不等式兩邊同乘以 ( 或除以

5、)同一個負數時, 不等號的方向必須改變,這是解不等式時最容易出錯的地方 ()一元一次不等式組含有相同未知數的幾個一元一次不等式所組成的不等 式組,叫做一元一次不等式組。說明:判斷一個不等式組是一元一次不等式組需滿足兩 個條件:組成不等式組的每一個不等式必須是一元一次不 等式,且未知數相同;不等式組中不等式的個數至少是 2 個,也就是說,可以是 2 個、3 個、4 個或更多。(7)一元一次不等式組的解集一元一次不等式組中,幾個不等式解集的公共部分叫 做這個一元一次不等式組的解集一元一次不等式組的解集通常利用數軸來確定 (8 )不等式組解集的確定方法,可以歸納為以下四種類型(設 a>b)不等

6、式組圖示解集ìíîx >ax >bb a(同大取大)x>ax <bb <x <aìíîìíîìíîxaxbx <ax >bx >ax <bb ab a(同小取小)(大小 交叉取中間) 無解(大小分 離解為空)(9)解一元一次不等式組的步驟(1) 分別求出不等式組中各個不等式的解集;(2) 利用數軸求出這些解集的公共部分,即這個不等式組 的解集.課堂練習 (一)2 x -1 51. 解不等式 ³ x - 5,

7、3 4并把它的解集在數軸上表示出來.解:去分母,得:()() 去括號,得: 移項,得: 合并同類項得:系數化為,得:解不等式組:2 x - 1 5³ x - 53 42 ( x + 4 ) £ 3 x + 3ï解:解不等式得: x8解不等式得: x5把不等式的解集和不等式的解集在數軸 上表示如下: 原不等式組的解集為 :5x8.求不等式(組)的特殊解:(1)求不等式 3x+14x-5 的正整數解解:移項,得:合并同類項,得:系數化為,得:所以不等式 的正整數解為:1、2、3、4、5、6()求不等式組ì2x +1 >5 ïí1(

8、x +2) £3 î2的整數解解:由不等式得 : x2由不等式得 : x4把不等式的解集和不等式的解集在數軸上表示 如下: 不等式組的解集為 :2x4不等式組的整數解為: 3、4.不等式 (組)在實際生活中的應用當應用題中出現以下的關鍵詞 , 如大 , 小 , 多 , 少 ,不小于 , 不大于 , 至少 , 至多等 , 應屬列不等式 ( 組 ) 來解決的問題 , 而 不能列方程(組)來解.()我市一山區學校為部分家遠的學生安排住宿,將 部分教室改造成若干間住房 . 如果每間住 5 人,那么有 12 人安排不下;如果每間住 8 人,那么有一間房還余一些床位, 問該校可能有幾間

9、住房可以安排學生住宿?住宿的學生可 能有多少人?解:設可能有間住房安排學生住宿,則根據題意可得: 解這個不等式,得:當時,住宿的學生可能有人,符合題意;當 時,住宿的學生可能有人,符合題意;當 時,住宿的學生可能有人,不符合題意。答:該校可能有間或間住房,當有間住房時,住宿學生有人;當有間住房時,住宿學生有人 ()學校要到體育用品商場購買籃球和排球共只已知籃球、排球的單價分別為 130 元、100 元。購買 100 只球所花費用多于 11800 元,但不超過 11900 元。你認為有 哪些購買方案?解:設買籃球個,排球個,則根據題意可 得:() () 解不等式 得:解不等式 得:13不等式組的

10、解集為 :x13答:所以有三中購買方案:購買籃球個,排球 個;購買籃球個,排球個;購買籃球 個,排球個。課堂小結1. 在判斷不等式成立與否或由不等式變形求某些字母 的范圍時,要認真觀察不等式的形式與不等號方向。2. 解一元一次不等式的步驟與解一元一次方程的步驟 大致相同,應注意的是:等式兩邊所乘以(或除以)的數 的正負,并根據不同情況靈活運用其性質。不等式組解集的確定方法。一元一次不等式(組)常與分式、根式、方 程、函數等知識聯系,解決綜合性問題。3.求不等式(組)的特殊解不等式(組)的解往往是無數多個,但有時解在某些范 圍內是有限的,如整數解、非負整數解,要求這些特殊解, 首先是確定不等式(組)的解集,然后再找到相應的答案。 在這類題目中,要注意對數形結合思想的應用。4.確定不等式(組)中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論