論電子結構與原子光譜現象.doc_第1頁
論電子結構與原子光譜現象.doc_第2頁
論電子結構與原子光譜現象.doc_第3頁
論電子結構與原子光譜現象.doc_第4頁
論電子結構與原子光譜現象.doc_第5頁
已閱讀5頁,還剩4頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

論電子結構與原子光譜現象譚星軍 1.電子發光 原子是如何發光的?要弄清這個問題首先必須明白光子是由原子的哪一部分發出的。我們知道,原子是由原子核和核外的電子組成的,原子核的結合能很大,不可能發出光子,所以光子只可能是電子發出的。在化學反應中伴隨著電子的得失,常常有能量(光子)放出,光電效應、激光現象及其它一些實驗也證明了光子是由電子發出的,所以可以肯定原子發光其實是電子發出光子。既然電子可以放出光子,那么光子必然是電子的組成部分,或者說電子有一定的內部結構,光子是其組成部分之一;由于光子不帶電,說明電子內部電荷的分布是不均勻的,因為如果電子內部電荷是均勻分布的,則光子就應該帶電。原子中原子核和電子之間的距離很小,它們之間的靜電力很強,因為電子內部電荷分布不均勻,所以在原子核強大的靜電力作用下電子內部電荷將重新分布,甚至可能發生裂變,這就為電子放出光子創造了條件。當電子裂變放出光子后,它的各個組成部分結合的更加緊密,在適當的時候可能吸收一個光子,這就為電子吸收光子儲存能量創造了條件。而電子正是通過不停地吸收、放出光子來和外界交換能量的。稍后我們將看到,原子正是通過電子不斷吸收、放出光子來和外界完成能量交換的。一般來說,電子質量越大其內部各部分結合的越松散,在靜電力作用下越容易發生裂變;電子質量越小其內部各部分結合的越緊密,在靜電力作用下越不容易發生裂變。與原子核“幻數”相似,總有特定質量的電子的結合力相當大,比其它質量電子的結合力大許多,這些特定質量的電子往往對應于某些穩定的軌道。有人認為物質發光是由于物質中的原子或分子受到擾動的結果,認為光子是由原子或分子發出的。其實這是一種錯誤的看法。我們知道,原子是由原子核和核外電子組成的,光子是一種物質實體,或者是由原子核發出的,或者是由電子發出的,除此以外再沒有別的選擇。說光子是由原子發出的,這是一種不確切的說法。 2.原子核和電子之間的磁力作用 兩個相距一定距離的異種點電荷在靜電力作用下必然會吸引在一起,因為靜電力作用在兩點電荷連線上。而原子核和電子不會吸引在一起。這就啟示我們在原子核和電子中必然存在一種其它作用力。這個力就是原子核和電子之間的磁力。我們知道,在通以相同方向電流的兩條平行導線間會產生磁力作用,在磁力作用下它們將彼此吸引,原子核和電子的相向運動正相當于通以相同方向電流的兩條平行導線,在它們之間也將產生磁力作用。靜電力的作用總是使電子獲得指向原子核的向心速度,而原子核和電子之間的磁力則使電子獲得切向速度,并且原子核和電子之間的相對速度越大,它們之間的磁力也越大。當原子核和電子之間彼此相對靜止在一定遠處時,在靜電力和磁力的共同作用下,它們并不會吸引在一起。因為靜電力使電子獲得向心速度,磁力使電子獲得切向速度,電子并不是沿著直線靠近原子核,而是沿著螺旋線靠近原子核。開始時螺旋線的半徑為無窮大,電子作直線運動;一旦電子相對原子核的速度不為零,磁力開始起作用,電子的運動軌跡開始發生彎曲;當電子與原子核靠近到一定的距離時,電子和原子核之間的靜電力恰好等于電子作圓周運動所需的向心力,此時電子處于平衡狀態,螺旋線變成了圓。同樣在電子離開原子核時也是沿著螺旋線運動的。在靜電力作用下,電子總要盡量靠近原子核,在磁力作用下,電子有遠離原子核的離心趨勢,正是在這兩種力作用下,電子處于穩定的平衡狀態中。電子在原子核中處于穩定狀態時,它的軌跡是圓。因為當電子的軌跡不是圓時,它總要受到磁力的作用,這個力使電子的切向速度增加、運動軌跡向圓靠近。而電子受磁力作用時它的運動軌跡就要發生變化,就不是穩定的,只有當電子的軌跡是圓時才不受磁力的作用,所以說電子在原子核中的穩定軌跡是圓。太陽系中的行星在太陽引力作用下,其運動軌跡可以是圓或橢圓,但在原子系統中,電子在原子核靜電力作用下,其穩定軌跡只可能是圓而不可能是橢圓。 3.基態電子的穩定性處于基態的電子為什么是穩定的?為什么不會被原子核吸收?人們通常認為:做加速運動的電荷會向外輻射能量.如果電子在原子核中做圓周運動,則它就有加速度,必然會不斷地向外輻射電磁波,隨著電子能量的減小它將沿著螺旋線落入原子核中,這樣整個原子就是不穩定的,然而事實并非如此。于是人們推測電子在原子核中不可能做圓周運動。我們認為以上推斷是錯誤的,電子的確在原子核中做圓周運動,其理由如下:第一,電子輻射電磁波并不是一個只出不進的過程。電子時刻不停地向外輻射能量,也在時刻不停地吸收光子,這是一個動態平衡過程。如果電子吸收的能量大于其輻射的能量則原子的溫度升高,如果電子吸收的能量小于其輻射的能量則原子的溫度降低,倘若沒有外界能量輸入,原子總會由于向外輻射能量而降低溫度,只要物體的溫度在絕對零度以上就會向外輻射電磁波。第二,電子在原子中的質量并非一成不變的。一般而言,電子離核越近質量越小,離核越遠質量越大(這一點我們稍后證明)。第三,電子和原子核之間并非只有靜電力作用,還存在磁力作用。正因為磁力作用的存在使電子在靠近原子核時切線速度不斷增大,從而使其離心力逐漸增大,以致于可以與靜電力抗衡維持電子在原子核中的穩定。這里需要我們證明隨著電子離核距離的減小,離心力的增加速度大于靜電力的增加速度。 設電子穩定時質量為M,速度為V,與原子核相距R,原子核電量為Q,此時靜電力F正好等于電子作圓周運動的向心力,離心力大于靜電力,所以此時電子作離心運動,將回到距核R的軌道上。同樣當電子受到遠離原子核的擾動后, 靜電力F大于電子作圓周運動的向心力,電子將向原子核運動,最終要回到距核R的軌道上,這里不再證明。 另外我們認為,做加速運動的電荷會向外輻射電磁波這個提法不夠確切,應該說做加速運動的自由電荷會向外輻射電磁波,而電子在原子核中做圓周運動時不會向外輻射電磁波。兩者有什么區別呢?我們知道,在原子核和電子結合成原子的過程中要向外放出能量,即自由電子要在原子核靜電力作用下裂變放出光子才能夠成為原子中的電子,原子中的電子和自由電子是有區別的。自由電子的質量大于原子中的電子的質量,自由電子各部分結合得較為松散, 受到外界擾動 (有加速度)時會向外輻射電磁波;而原子中的電子質量小,各部分結合得較為緊密,受到外界擾動(有加速度)時未必會向外輻射電磁波,只有當外界擾動(加速度)足夠大時才會裂變輻射電磁波,所以電子可以在原子中做圓周運動而并不向外輻射電磁波。 4.穩定軌道的形成 對于處于基態的電子來說,每秒會有許多光子與其作用。這些作用有指向原子核的,也有指向核外的。電子在吸收一個或幾個光子以后質量增加,形成新的電子。我們先考慮指向核外的擾動。設電子在吸收一個或幾個光子以后質量增加為M+m,與原子核相距R+r,我們知道,一定質量的電子總有與一條特定軌道與之對應,比如電子的質量為M時其軌道半徑為R,那么當電子質量為M+m時就可能停留在半徑為R+r的軌道。但這里我們少考慮了一個條件, 那就是質量為M+m的電子的結合能。我們知道電子在每秒內會受到許多光子的擾動,假設質量為M+m的電子運行在半徑為R+r的軌道上,若它受到一個指向原子核的擾動, 離核距離變為R+r-r,此時原子核靜電力對它的作用增強,若它的結合能小的話則電子立即裂變放出光子重新回到其原來的軌道R上;如果質量為M+m的電子內部的結合能非常小,以至于受到微小的擾動時立即裂變放出光子, 那么它在半徑為R+r的軌道上停留的時間也趨近于零, 換句話說半徑為R+r的軌道根本不存在; 如果質量為M+m的電子內部的結合能非常大, 以致于受到很大的擾動時它才裂變放出光子, 那么電子就能夠在半徑為R+r的軌道上停留一段時間,這段時間就是原子的平均壽命。假設有一群電子處于同一激發態,由于每個電子受到的擾動情況不一樣,有的電子受到的擾動大有的電子受到的擾動小,而只有電子受到足夠大的擾動并運動到離核足夠近的地方才會裂變放出光子,所以電子裂變回到基態的時間也不一樣。處于同一激發態的原子的平均壽命和兩個因素有關:一是電子的結合能,二是電子受到的擾動。電子內部的結合能與原子核“幻數”相似,只有特定質量的電子的結合能才是很大的,所以電子的軌道也是特定的、不連續的,其它質量的電子由于結合能很小,裂變時間極短,所以它們不可能穩定停留在原子中,也形成不了穩定軌道甚至根本就沒有軌道。我們再來考慮指向原子核的擾動。設電子在吸收一個或幾個光子以后質量增加為M+m,與原子核相距R-r,此時原子核對電子的靜電力增強,電子立即裂變放出質量為m的光子, 由前面的證明我們知道,此時電子的速度增大,離心力大于靜電力, 電子最終將停留在半徑為R的穩定軌道上。也許有人會懷疑,這樣看來電子可能存在的穩定軌道豈不是唯一的了?實際上由于電子在原子核外有幾個不同的穩定質量,所以它也有幾條穩定軌道,一定的質量總是與某一條特定軌道相對應。從這里我們可以看出,電子在原子核中的穩定軌道往往對應于電子結合能極大的質量,結合能小的質量由于在原子中不穩定因而不會形成穩定軌道。 5.電子結構與不同躍遷軌道 對于處于同一激發態的一群電子而言, 設電子的質量為M+m,它們可能會有不同的躍遷軌道,放出的光子的能量(質量)也不同,但總是躍遷到離核近的電子放出的光子的能量(質量)大。電子從激發態回到基態的過程并不是先放出光子再回到基態,而是先回到比基態更近的地方放出光子然后才回到基態。當電子回到離核R-r處時, 在靜電力作用下電子裂變放出質量為m的光子,此時離心力大于靜電力,電子將回到半徑為R的穩定軌道上。那么電子為什么會有多條躍遷軌道呢?這說明處于同一激發態的電子內部結構(結合力)不同,有的結合力大,有的結合力小,結合力小的光子在離核較遠的地方裂變,放出的光子能量也較??;結合力大的光子在離核較近的地方裂變,放出的光子能量也較大,電子的躍遷方式是由其內部結構決定的。同一質量的電子可能有多種裂變方式,再次向我們說明電子具有內部結構,在考慮原子光譜時一定要考慮電子的內部結構。處于激發態的電子在向基態躍遷時會發出光子;把原子的內層電子打掉以后外層電子會放出光子并向離核更近的軌道躍遷。這些現象啟示我們:電子離核越近質量越小,電子離核越遠質量越大。從這里也可以看出,電子質量越小其內部結合力越大。因為離核越近電子受到的靜電力越大,而電子能夠穩定存在說明其內部結合力越大。在同一個原子中,內層電子的質量小于外層電子的質量;同一個電子離核越近質量越小。人們發射的人造衛星可以設定軌道,其軌道變化可以是連續的,但對原子核中的電子來說,其軌道變化則是不連續的。怎樣理解這一點呢?讓我們做一個假想實驗。把兩個帶異種電荷的點電荷放置在一定遠處,并且假定它們之間除了靜電力以外不在受到其它力的作用,則最終它們將互相吸引在一起。無論怎樣改變這兩個電荷的質量、電量,結果都是相同的。這說明:用宏觀電荷不可能模擬原子核和電子之間的作用力。說到這里,好事者馬上就會解釋,因為宏觀電荷物質波的波長極短而電子物質波的波長較大,所以用宏觀電荷不可能模擬原子核和電子之間的作用力。換一個角度來說,宏觀物質和微觀物質是有區別的,用宏觀物質不能模擬微觀物質。但區別究竟在哪里?一個是宏觀物質而另一個是微觀物質,這個解釋近乎無聊了。還是讓我們來仔細分析為什么用宏觀電荷不可能模擬原子核和電子之間的作用力。我們知道,在靜電力作用下,電子和原子核開始時相向運動,而后在磁力作用下沿著螺旋線相互靠近,正是由于原子核和電子之間的磁力使電子獲得了繞原子核運動的切向加速度,并使整個原子處于穩定狀態。那么,兩個宏觀點電荷之間的運動軌跡為什么是一條直線呢?這是因為宏觀電荷的荷質比遠遠小于原子核和電子的荷質比,在靜電力作用下宏觀點電荷獲得的最終速度也小得可憐,因此宏觀點電荷之間因相對運動而產生的磁力也微乎其微,近似于零。所以宏觀點電荷在靜電力作用下表現為相向運動,其運動軌跡接近直線。從這里我們可以得出這樣一個結論:雖然靜電力作用在兩個電荷的連心線上,但是僅在靜電力作用下,電荷的運動軌跡不一定就是直線,兩個電荷的荷質比越小,其運動軌跡越接近直線,反之則越接近曲線。那么,如果宏觀點電荷的荷質比足夠大甚至可以與原子核或電子相比時,是否可以用宏觀點電荷模擬原子核和電子相之間的作用呢?也不能!如果宏觀點電荷的荷質比足夠大,甚至可以與原子核或電子相比,那么這樣的兩個異種電荷在靜電力作用下會沿著螺旋線相互接近,最終會處于穩定狀態,但由于宏觀點電荷的質量不會發生變化,因此最多只能形成一條穩定軌道,而不可能象電子那樣在原子核中有多條穩定軌道。 在多電子原子中,各電子間有什么主要區別呢?有人認為離核越近的電子能量越低,越不容易失去;離核越遠電子能量越高越容易失去,但這還不是最主要的區別。多電子原子中各電子間最主要的區別在于它們的質量不同。離核越近的電子質量越小,離核越遠的電子質量越大,同一個原子中沒有兩個質量相同的電子存在。在氫原子中也是電子離核越近質量越小,離核越遠質量越大。 6.原子的吸收光譜和明線光譜 在原子的吸收光譜中,只有特定能量的光子才被電子吸收;在原子的明線光譜中,同樣也只能發出特定能量的光子。于是人們認為電子只能吸收或發出特定能量的光子。我們知道,只要物體的溫度在絕對零度以上,就會向外發射電磁波,物質的發射光譜是連續光譜。那么其它能量的光子是由哪一部分發出又是如何發出的呢?顯然還是由電子發出的,因為原子核不可能發出光子。當我們用電子束轟擊汞原子蒸汽時,可以發現當電子的能量為某些特定值時,汞原子強烈地吸收其能量;對于其它能量的電子汞原子只吸收其一部分能量。汞原子只吸收電子束的能量實際是汞原子中的電子吸收電子束的能量??梢姡?原子中的電子可以吸收各種能量(質量), 但對特定的能量(質量)吸收能力十分強。在原子的吸收光譜中,電子可以吸收各種能量的光子,只不過大部分光子被電子吸收后與電子的結合能并不大,受到微小的擾動后立即放出光子,由于該過程極短,所以當連續光通過原子蒸汽時,大部分光子被吸收后又很快放出,看起來似乎沒有與原子作用,只有極少數具有特定能量的光子與電子的結合力極大,這類光子被吸收后要保持一段時間才可能放出,故吸收光譜會出現幾條暗線。至于原子的明線光譜,與其說是明線光譜還不如說原子的發射光譜中有幾條線特別亮。這是因為處于激發態的電子比別的能量狀態的電子穩定,停留的時間較長,所以在一群原子中處于激發態的電子數目總比別的狀態的電子數目多,因而它們發出的光也更亮一些。事實上原子的發射光譜不僅僅是明線光譜,明線光譜只是原子發射光譜中極個別的具有代表性的光子,原子幾乎可以發出小于一定能量的任何光子。電子在原子中時刻不停地吸收各種能量的光子,由于電子與絕大部分光子的結合力都不大,所以電子也在時刻不停地放出各種能量的光子,因此物質的發射光譜往往是連續光譜。 許多人都認為原子只能吸收特定能量的光子,原子也只能放出幾種特定能量的光子,因為他們看到原子的吸收光譜中僅有幾條特定頻率的暗線,而子的發射光譜也僅僅是幾條特定頻率的明線而已。其實這種看法是錯誤的。我們不妨這樣分析,若原子只能吸收特定能量的光子,則只有特定能量的幾種光子對物體具有明顯的熱效應,并且每種物質的敏感光子不同。實際上并非如此。我們知道,紅外線具有顯著的熱效應,對任何物質都是如此。此外,物質的發射光譜是連續光譜,這也說明原子或分子的吸收(或發射)出的光子是廣譜性的。為了充分理解這個問題,需要作進一步的說明。現代物理學指出:氫原子吸收的光子能量只能是13.6/n*n電子伏(這里n取自然數),也就是13.6 、3.4、 1.5電子伏, 并且認為對于10電子伏、3電子伏這樣的其它能量的光子不會被電子吸收。我們認為:電子吸收的光子能量是連續的, 對于10電子伏、3電子伏這樣的其它能量的光子同樣會被電子吸收,只不過電子吸收這些光子后,電子和光子的結合能不夠大形不成穩定的軌道,所以電子又很快放出該光子,由于作用時間極短,以致于我們誤認為電子沒有吸收光子。換一個角度來考慮,當大量的原子吸收了能量連續的光子時,由于大部分電子與光子的結合力都不大,所以這些電子在極短的時間內(設為t)就會裂變放出光子, 而能量為13.6 、3.4、 1.5電子伏的光子與電子的結合力很大,所以電子裂變放出光子的時間也很長,如果這個時間是100t,則電子放出相應的光子也比其它光子亮100倍;如果這個時間是1000t,則電子放出相應的光子也比其它光子亮1000倍,這樣,在原子的明線光譜中自然就形成幾條特殊的亮線了。由此我們得出一個結論:在原子的發射光譜中,任意一條譜線的亮度與處于相應激發態的原子的平均壽命成正比,原子的平均壽命越長,譜線的亮度越大;原子的平均壽命越短,線的亮度越小。當然這有個前提,那就是被原子吸收的連續光譜中各種能量的光子是平均分布的。 7.熱現象的本質 由于電子時刻不停地受到光子的擾動,不斷地吸收各種能量的光子,也不停地放出各種能量的光子,所以電子在原子核中并不是處于穩定狀態,它的運動軌跡也不是正圓。一般來說,溫度越高,電子受到的擾動越大,其運動軌跡偏離圓形的趨勢越明顯;溫度越低,電子受到的擾動越小,電子的運動軌跡越接近圓(只有在絕對零度時,電子的運動軌跡才可能是正圓)。從這個意義上來說,原子模型可以看作是盧瑟福的行星模型和電子云模型的結合:溫度越高,原子模型越接近行星模型;溫度越低,原子模型越接近電子云模型(但在某一瞬間,電子在原子核中有確切的位置)。溫度的高低反映了電子偏離穩定軌道程度的大小,單個原子(分子)也有溫度。電子偏離圓形軌道的程度越大,表明該原子的溫度越高,電子裂變后放出的能量也越大。所以溫度升高時物體發出的電磁輻射向短波方向移動。對于溫度一定的物體來說,它內部包含了大量的原子,這些原子中的電子由于受到的擾動大小不同,它們裂變放出光子的質量也不同,但大致滿足正態分布,即發出的光子中能量特別大的和能量特別小的都是極少數。由前面的論述我們知道,電子在原子核中的能量大小并非定值:電子離核越遠電勢能越大,離核越近電勢能越小。與宏觀電荷一樣,電子的電勢能是其與原子核距離的函數,電子和原子核間的作用力服從庫侖定律。溫度越高,電子離核越遠,電勢能也越大,因而也越容易失去;溫度越低,電子離核越近,電勢能也越小,也越不容易失去。 什么是熱現象呢?這似乎是不是問題的問題。人們通常認為:熱現象是大量分子無規則運動的反映,溫度越高分子的平均速率越大,溫度越低分子的平均速率越小。果真如此嗎?我們知道,太陽時刻不停地向外拋射高能粒子,這些粒子的速度接近光速,宇宙中其它恒星也在不停地向外拋射高能粒子,所以在宇宙空間任何地方,都有許多高能粒子正在做雜亂無章的運動,這些粒子的速度通常都接近光速或亞光速。這樣看來宇宙空間的溫度應該很高(至少比恒星內部高),宇宙空間應該是很明亮的。但事實上,宇宙空間是漆黑的一團,溫度只超過絕對零度一點。這說明粒子運動速度大未必溫度就很高,物體的溫度不是由組成它的原子(分子)的平均運動速度決定的。溫度升高,原子(分子)的平均速度增大。但反過來,原子(分子)的平均速度增大并不意味著溫度升高。我們知道,只要物體的溫度在絕對零度以上就會向外輻射電磁波,而物質向外輻射電磁波的原因是電子受到擾動后在靜電力作用下放出光子,并且光子受到的擾動越大放出的光子能量也越大,相應的物體的溫度也越高。從這個意義上來說,原子是儲存熱量的最小單位,單個原子也有溫度,因為它可以儲存熱能。但單個的帶電粒子如質子、電子在不受外界任何擾動時,即便速度再大也不會向外界釋放能量,因此它們都不能儲存熱能,因而也沒有溫度。應該看到,原子(分子)的高速運動所具有的能量僅僅是動能而不是熱能,和宏觀物體一樣,速度大未必溫度高。宏觀物體的速度與其溫度無關,原子(分子)也是如此。一個原子(分子)的速度比其它原子(分子)的速度大,只能說明它的動能大,儲存的熱能未必就多。熱能僅儲存于原子核和電子形成的原子體系中,兩者中缺少任何一個都不能儲存熱能。在日常生活中我們用紅外線(微波)加熱而不用紫外線,紫外線的熱效應遠遠小于紅外線(微波)。這是因為紅外線(微波)光子的質量小,和原子中電子的結合力大(包括內層電子), 而紫外線和原子中電子的結合力小(它幾乎不與內層電子作用),所以紅外線往往容易被物體吸收,其熱效應當然比紫外線強。再進一步考慮,什么是熱現象呢?熱現象和溫度之間有什么關系呢?我們認為:對一個物體而言,倘若它儲存了熱能它就有溫度,并且它儲存的熱能越多它的溫度就越高,反之則溫度越低;倘若物體沒有儲存熱能則它就沒有溫度或者說它的溫度是絕對零度;倘若物體不能儲存熱能,則用溫度來衡量該物體是沒有意義的。我們知

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論