臨澧四中考試題目及答案_第1頁
臨澧四中考試題目及答案_第2頁
臨澧四中考試題目及答案_第3頁
臨澧四中考試題目及答案_第4頁
臨澧四中考試題目及答案_第5頁
已閱讀5頁,還剩4頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

臨澧四中考試題目及答案初中數學試卷一、選擇題(每題3分,共30分)1.-3的相反數是()A.-3B.3C.-$frac{1}{3}$D.$frac{1}{3}$2.下列運算正確的是()A.$a^2+a^3=a^5$B.$(a^3)^2=a^6$C.$a^6÷a^2=a^3$D.$(ab)^3=ab^3$3.不等式$2x-1>3$的解集是()A.$x>1$B.$x>2$C.$x<1$D.$x<2$4.已知點$A(-2,y_1)$,$B(1,y_2)$,$C(2,y_3)$都在反比例函數$y=frac{k}{x}(k>0)$的圖象上,則$y_1$,$y_2$,$y_3$的大小關系是()A.$y_1<y_2<y_3$B.$y_2<y_3<y_1$C.$y_1<y_3<y_2$D.$y_3<y_2<y_1$5.一個多邊形的內角和是外角和的2倍,則這個多邊形是()A.四邊形B.五邊形C.六邊形D.八邊形6.若關于$x$的一元二次方程$x^2-2x+m=0$有兩個不相等的實數根,則$m$的取值范圍是()A.$m<1$B.$m>1$C.$m≤1$D.$m≥1$7.為了解某班學生每周做家務勞動的時間,某綜合實踐活動小組對該班50名學生進行了調查,有關數據如下表:|每周做家務的時間(小時)|0|1|1.5|2|2.5|3|3.5|4||----|----|----|----|----|----|----|----|----||人數(人)|2|2|6|8|12|13|4|3|根據上表中的數據,這50名學生每周做家務勞動的平均時間是()A.2.5小時B.2.44小時C.2.52小時D.2.6小時8.如圖,在$RttriangleABC$中,$angleC=90^{circ}$,$AC=3$,$BC=4$,則$sinA$的值是()A.$frac{3}{4}$B.$frac{4}{3}$C.$frac{3}{5}$D.$frac{4}{5}$9.已知二次函數$y=ax^2+bx+c$的圖象如圖所示,則下列結論:①$a>0$;②$b<0$;③$c>0$;④$b^2-4ac>0$,其中正確的個數是()A.1個B.2個C.3個D.4個10.如圖,在$triangleABC$中,$DEparallelBC$,$frac{AD}{DB}=frac{1}{2}$,$DE=4$,則$BC$的長是()A.8B.10C.12D.16二、填空題(每題3分,共15分)11.分解因式:$x^3-4x=$______。12.函數$y=frac{1}{x-2}$中,自變量$x$的取值范圍是______。13.已知扇形的圓心角為$120^{circ}$,半徑為3,則扇形的面積是______。14.如圖,在菱形$ABCD$中,對角線$AC$,$BD$相交于點$O$,若$AC=6$,$BD=8$,則菱形$ABCD$的周長是______。15.觀察下列一組數:$frac{1}{3}$,$frac{2}{5}$,$frac{3}{7}$,$frac{4}{9}$,$frac{5}{11}$,…,根據該組數的排列規律,可推出第10個數是______。三、解答題(共75分)16.(8分)計算:$sqrt{12}-2sin60^{circ}+(frac{1}{2})^{-1}-(π-3.14)^0$。17.(8分)先化簡,再求值:$(frac{x^2-4}{x^2-4x+4}-frac{1}{2-x})divfrac{x+3}{x^2-2x}$,其中$x=sqrt{3}$。18.(9分)已知一次函數$y=kx+b$的圖象經過點$A(-1,-5)$,且與正比例函數$y=frac{1}{2}x$的圖象相交于點$B(2,a)$。(1)求$a$的值;(2)求一次函數$y=kx+b$的表達式;(3)在同一坐標系中,畫出這兩個函數的圖象,并求這兩個函數圖象與$x$軸所圍成的三角形的面積。19.(9分)某商場為了吸引顧客,設立了一個可以自由轉動的轉盤,并規定:顧客每購買100元的商品,就能獲得一次轉動轉盤的機會。如果轉盤停止后,指針正好對準紅、黃或綠色區域,顧客就可以分別獲得100元、50元、20元的購物券(轉盤被等分成20個扇形)。(1)甲顧客購物80元,他獲得購物券的概率是多少?(2)乙顧客購物120元,他獲得購物券的概率是多少?他得到100元、50元、20元購物券的概率分別是多少?20.(10分)如圖,在$triangleABC$中,$AB=AC$,點$D$是$BC$的中點,點$E$在$AD$上。(1)求證:$BE=CE$;(2)若$BE$的延長線交$AC$于點$F$,且$BFperpAC$,垂足為$F$,$AD=8$,$BC=12$,求$BF$的長。21.(10分)某工廠計劃生產$A$、$B$兩種產品共60件,需購買甲、乙兩種材料。生產一件$A$產品需甲種材料4千克,乙種材料1千克;生產一件$B$產品需甲、乙兩種材料各3千克。經測算,購買甲、乙兩種材料各1千克共需資金60元;購買甲種材料2千克和乙種材料3千克共需資金155元。(1)甲、乙兩種材料每千克分別是多少元?(2)現工廠用于購買甲、乙兩種材料的資金不超過9900元,且生產$B$產品不少于38件,問符合生產條件的生產方案有哪幾種?22.(11分)如圖,在平面直角坐標系中,拋物線$y=ax^2+bx+c$經過$A(-1,0)$,$B(3,0)$,$C(0,-3)$三點。(1)求拋物線的表達式;(2)點$D$是拋物線上一動點,當點$D$到直線$BC$的距離最大時,求點$D$的坐標;(3)在拋物線的對稱軸上是否存在點$P$,使$trianglePBC$是以$BC$為腰的等腰三角形?若存在,求出點$P$的坐標;若不存在,請說明理由。答案一、選擇題1.B。根據相反數的定義,只有符號不同的兩個數互為相反數,所以-3的相反數是3。2.B。A選項,$a^2$與$a^3$不是同類項,不能合并;C選項,$a^6÷a^2=a^{6-2}=a^4$;D選項,$(ab)^3=a^3b^3$。3.B。解不等式$2x-1>3$,移項得$2x>3+1$,即$2x>4$,兩邊同時除以2得$x>2$。4.C。因為反比例函數$y=frac{k}{x}(k>0)$,所以在每個象限內$y$隨$x$的增大而減小。點$A(-2,y_1)$在第二象限,$y_1>0$;點$B(1,y_2)$,$C(2,y_3)$在第一象限,且$1<2$,所以$y_2>y_3>0$,則$y_1>y_3>y_2$。5.C。設這個多邊形的邊數為$n$,根據多邊形內角和公式$(n-2)times180^{circ}$,外角和為$360^{circ}$,由題意得$(n-2)times180=2times360$,解得$n=6$。6.A。對于一元二次方程$ax^2+bx+c=0(a≠0)$,判別式$Delta=b^2-4ac$,當$Delta>0$時,方程有兩個不相等的實數根。在方程$x^2-2x+m=0$中,$a=1$,$b=-2$,$c=m$,所以$Delta=(-2)^2-4m>0$,即$4-4m>0$,解得$m<1$。7.B。平均時間$=frac{0times2+1times2+1.5times6+2times8+2.5times12+3times13+3.5times4+4times3}{50}=2.44$(小時)。8.D。在$RttriangleABC$中,根據勾股定理$AB=sqrt{AC^2+BC^2}=sqrt{3^2+4^2}=5$,所以$sinA=frac{BC}{AB}=frac{4}{5}$。9.C。由拋物線開口向下得$a<0$;對稱軸在$y$軸右側,根據“左同右異”得$b>0$;拋物線與$y$軸交于正半軸,所以$c>0$;拋物線與$x$軸有兩個交點,所以$b^2-4ac>0$,故③④正確。10.C。因為$DEparallelBC$,所以$triangleADEsimtriangleABC$,則$frac{AD}{AB}=frac{DE}{BC}$。又因為$frac{AD}{DB}=frac{1}{2}$,所以$frac{AD}{AB}=frac{1}{1+2}=frac{1}{3}$,已知$DE=4$,所以$frac{1}{3}=frac{4}{BC}$,解得$BC=12$。二、填空題11.$x(x+2)(x-2)$。先提取公因式$x$,再利用平方差公式$a^2-b^2=(a+b)(a-b)$,$x^3-4x=x(x^2-4)=x(x+2)(x-2)$。12.$x≠2$。因為分母不能為0,所以$x-2≠0$,即$x≠2$。13.$3pi$。根據扇形面積公式$S=frac{npir^2}{360}$(其中$n$為圓心角度數,$r$為半徑),可得扇形面積為$frac{120pitimes3^2}{360}=3pi$。14.20。因為菱形的對角線互相垂直平分,所以$AO=frac{1}{2}AC=3$,$BO=frac{1}{2}BD=4$,根據勾股定理可得$AB=sqrt{AO^2+BO^2}=sqrt{3^2+4^2}=5$,則菱形$ABCD$的周長為$4AB=20$。15.$frac{10}{21}$。分子依次是1,2,3,4,…,則第10個數的分子是10;分母依次是3,5,7,9,…,規律為$2n+1$,當$n=10$時,分母為$2times10+1=21$,所以第10個數是$frac{10}{21}$。三、解答題16.[begin{align}&sqrt{12}-2sin60^{circ}+(frac{1}{2})^{-1}-(π-3.14)^0=&2sqrt{3}-2timesfrac{sqrt{3}}{2}+2-1=&2sqrt{3}-sqrt{3}+2-1=&sqrt{3}+1end{align}]17.[begin{align}&(frac{x^2-4}{x^2-4x+4}-frac{1}{2-x})divfrac{x+3}{x^2-2x}=&[frac{(x+2)(x-2)}{(x-2)^2}+frac{1}{x-2}]divfrac{x+3}{x(x-2)}=&(frac{x+2}{x-2}+frac{1}{x-2})divfrac{x+3}{x(x-2)}=&frac{x+3}{x-2}timesfrac{x(x-2)}{x+3}=&xend{align}]當$x=sqrt{3}$時,原式$=sqrt{3}$。18.(1)把$B(2,a)$代入$y=frac{1}{2}x$,得$a=frac{1}{2}times2=1$。(2)把$A(-1,-5)$,$B(2,1)$代入$y=kx+b$,得$begin{cases}-k+b=-52k+b=1end{cases}$,兩式相減得$3k=6$,解得$k=2$,把$k=2$代入$-k+b=-5$得$b=-3$,所以一次函數表達式為$y=2x-3$。(3)一次函數$y=2x-3$與$x$軸交點為$(frac{3}{2},0)$,兩函數圖象交點為$B(2,1)$。所以這兩個函數圖象與$x$軸所圍成的三角形的底為$frac{3}{2}$,高為1,面積為$frac{1}{2}timesfrac{3}{2}times1=frac{3}{4}$。19.(1)甲顧客購物80元,未達到100元,不能獲得轉動轉盤的機會,所以他獲得購物券的概率是0。(2)乙顧客購物120元,能獲得轉動轉盤的機會。轉盤被等分成20個扇形,其中紅、黃、綠區域共占10個扇形,所以他獲得購物券的概率是$frac{10}{20}=frac{1}{2}$;獲得100元購物券的概率是$frac{1}{20}$;獲得50元購物券的概率是$frac{2}{20}=frac{1}{10}$;獲得20元購物券的概率是$frac{7}{20}$。20.(1)因為$AB=AC$,$D$是$BC$中點,所以$AD$垂直平分$BC$,根據線段垂直平分線上的點到線段兩端距離相等,可得$BE=CE$。(2)因為$AB=AC$,$D$是$BC$中點,所以$ADperpBC$,$BD=frac{1}{2}BC=6$。在$RttriangleABD$中,根據勾股定理得$AB=sqrt{AD^2+BD^2}=sqrt{8^2+6^2}=10$。因為$S_{triangleABC}=frac{1}{2}BCcdotAD=frac{1}{2}ACcdotBF$,$AC=AB=10$,$BC=12$,$AD=8$,所以$frac{1}{2}times12times8=frac{1}{2}times10timesBF$,解得$BF=frac{48}{5}$。21.(1)設甲種材料每千克$x$元,乙種材料每千克$y$元,根據題意得$begin{cases}x+y=602x+3y=155end{cases}$,由$x+y=60$得$x=60-y$,代入$2x+3y=155$得$2(60-y)+3y=155$,解得$y=35$,則$x=25$。所以甲種材料每千克25元,乙種材料每千克35元。(2)設生產$A$產品$m$件,則生產$B$產品$(60-m)$件。根據題意得$begin{cases}4times25m+3times25(60-m)+1times35m+3times35(60-m)≤990060-m≥38end{cases}$,解第一個不等式得$100m+4500-75m+35m+6300-105m≤9900$,$-45m≤-900$,$m≥20$;解第二個不等式得$m≤22$。所以$20≤m≤22$,因為$m$為整數,所以$m=20$,$21$,$22$,對應的$60-m=40$,$39$,$38$。所以有三種生產方案:方案一:生產$A$產品20件,$B$產品40件;方案二:生產$A$產品21件,$B$產品39件;方案三:生產$A$產品22件,$B$產品38件。22.(1)設拋物線表達式為$y=a(x+1)(x-3)$,把$C(0,-3)$代入得$-3=a(0+1)(0-3)$,解得$a=1$,所以拋物線表達式為$y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論