




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河南省安陽市林州市林州一中高三高考保溫金卷數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.2.趙爽是我國古代數學家、天文學家,大約公元222年,趙爽為《周髀算經》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設,若在大正六邊形中隨機取一點,則此點取自小正六邊形的概率為()A. B.C. D.3.定義在上的函數與其導函數的圖象如圖所示,設為坐標原點,、、、四點的橫坐標依次為、、、,則函數的單調遞減區間是()A. B. C. D.4.函數的大致圖象是()A. B.C. D.5.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②6.已知復數,,則()A. B. C. D.7.設,且,則()A. B. C. D.8.已知,函數在區間內沒有最值,給出下列四個結論:①在上單調遞增;②③在上沒有零點;④在上只有一個零點.其中所有正確結論的編號是()A.②④ B.①③ C.②③ D.①②④9.已知在中,角的對邊分別為,若函數存在極值,則角的取值范圍是()A. B. C. D.10.定義兩種運算“★”與“◆”,對任意,滿足下列運算性質:①★,◆;②()★★,◆◆,則(◆2020)(2020★2018)的值為()A. B. C. D.11.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.12.()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.實數滿足,則的最大值為_____.14.(5分)某膳食營養科研機構為研究牛蛙體內的維生素E和鋅、硒等微量元素(這些元素可以延緩衰老,還能起到抗癌的效果)對人體的作用,現從只雌蛙和只雄蛙中任選只牛蛙進行抽樣試驗,則選出的只牛蛙中至少有只雄蛙的概率是____________.15.為了了解一批產品的長度(單位:毫米)情況,現抽取容量為400的樣本進行檢測,如圖是檢測結果的頻率分布直方圖,根據產品標準,單件產品長度在區間的一等品,在區間和的為二等品,其余均為三等品,則樣本中三等品的件數為__________.16.已知全集,集合,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若在處取得極值,求的值;(2)求在區間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立.18.(12分)已知等比數列是遞增數列,且.(1)求數列的通項公式;(2)若,求數列的前項和.19.(12分)如圖,在直棱柱中,底面為菱形,,,與相交于點,與相交于點.(1)求證:平面;(2)求直線與平面所成的角的正弦值.20.(12分)設函數,,(Ⅰ)求曲線在點(1,0)處的切線方程;(Ⅱ)求函數在區間上的取值范圍.21.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大小;(2)求函數的值域.22.(10分)某校共有學生2000人,其中男生900人,女生1100人,為了調查該校學生每周平均體育鍛煉時間,采用分層抽樣的方法收集該校100名學生每周平均體育鍛煉時間(單位:小時).(1)應抽查男生與女生各多少人?(2)根據收集100人的樣本數據,得到學生每周平均體育鍛煉時間的頻率分布表:時間(小時)[0,1](1,2](2,3](3,4](4,5](5,6]頻率0.050.200.300.250.150.05若在樣本數據中有38名男學生平均每周課外體育鍛煉時間超過2小時,請完成每周平均體育鍛煉時間與性別的列聯表,并判斷是否有95%的把握認為“該校學生的每周平均體育鍛煉時間與性別有關”?男生女生總計每周平均體育鍛煉時間不超過2小時每周平均體育鍛煉時間超過2小時總計附:K2.P(K2≥k0)0.1000.0500.0100.0052.7063.8416.6357.879
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據,可知命題的真假,然后對取值,可得命題的真假,最后根據真值表,可得結果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點睛】本題主要考查對命題真假的判斷以及真值表的應用,識記真值表,屬基礎題.2.D【解析】
設,則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結論.【詳解】由題意,設,則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎知識,考查運算求解能力,屬于基礎題.3.B【解析】
先辨別出圖象中實線部分為函數的圖象,虛線部分為其導函數的圖象,求出函數的導數為,由,得出,只需在圖中找出滿足不等式對應的的取值范圍即可.【詳解】若虛線部分為函數的圖象,則該函數只有一個極值點,但其導函數圖象(實線)與軸有三個交點,不合乎題意;若實線部分為函數的圖象,則該函數有兩個極值點,則其導函數圖象(虛線)與軸恰好也只有兩個交點,合乎題意.對函數求導得,由得,由圖象可知,滿足不等式的的取值范圍是,因此,函數的單調遞減區間為.故選:B.【點睛】本題考查利用圖象求函數的單調區間,同時也考查了利用圖象辨別函數與其導函數的圖象,考查推理能力,屬于中等題.4.A【解析】
用排除B,C;用排除;可得正確答案.【詳解】解:當時,,,所以,故可排除B,C;當時,,故可排除D.故選:A.【點睛】本題考查了函數圖象,屬基礎題.5.C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.6.B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數問題是高考數學中的常考問題,屬于得分題,主要考查的方面有:復數的分類、復數的幾何意義、復數的模、共軛復數以及復數的乘除運算,在運算時注意符號的正、負問題.7.C【解析】
將等式變形后,利用二次根式的性質判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數方程,恒等變化后根據的關系即可求解,屬于簡單題目.8.A【解析】
先根據函數在區間內沒有最值求出或.再根據已知求出,判斷函數的單調性和零點情況得解.【詳解】因為函數在區間內沒有最值.所以,或解得或.又,所以.令.可得.且在上單調遞減.當時,,且,所以在上只有一個零點.所以正確結論的編號②④故選:A.【點睛】本題主要考查三角函數的圖象和性質,考查函數的零點問題,意在考查學生對這些知識的理解掌握水平.9.C【解析】
求出導函數,由有不等的兩實根,即可得不等關系,然后由余弦定理可及余弦函數性質可得結論.【詳解】,.若存在極值,則,又.又.故選:C.【點睛】本題考查導數與極值,考查余弦定理.掌握極值存在的條件是解題關鍵.10.B【解析】
根據新運算的定義分別得出◆2020和2020★2018的值,可得選項.【詳解】由()★★,得(+2)★★,又★,所以★,★,★,,以此類推,2020★2018★2018,又◆◆,◆,所以◆,◆,◆,,以此類推,◆2020,所以(◆2020)(2020★2018),故選:B.【點睛】本題考查定義新運算,關鍵在于理解,運用新定義進行求值,屬于中檔題.11.D【解析】
設,,作為一個基底,表示向量,,,然后再用數量積公式求解.【詳解】設,,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.12.D【解析】
利用,根據誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導公式以及兩角差的正弦公式,關鍵在于掌握公式,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13..【解析】
畫出可行域,解出可行域的頂點坐標,代入目標函數求出相應的數值,比較大小得到目標函數最值.【詳解】解:作出可行域,如圖所示,則當直線過點時直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【點睛】本題考查線性規劃的線性目標函數的最優解問題.線性目標函數的最優解一般在平面區域的頂點或邊界處取得,所以對于一般的線性規劃問題,若可行域是一個封閉的圖形,我們可以直接解出可行域的頂點,然后將坐標代入目標函數求出相應的數值,從而確定目標函數的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.14.【解析】
記只雌蛙分別為,只雄蛙分別為,從中任選只牛蛙進行抽樣試驗,其基本事件為,共15個,選出的只牛蛙中至少有只雄蛙包含的基本事件為,共9個,故選出的只牛蛙中至少有只雄蛙的概率是.15.100.【解析】分析:根據頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數.詳解:由題意得,三等品的長度在區間,和內,根據頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數為.點睛:頻率分布直方圖的縱坐標為,因此每一個小矩形的面積表示樣本個體落在該區間內的頻率,把小矩形的高視為頻率時常犯的錯誤.16.【解析】
根據題意可得出,然后進行補集的運算即可.【詳解】根據題意知,,,,.故答案為:.【點睛】本題考查列舉法的定義、全集的定義、補集的運算,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)2;(2);(3)證明見解析【解析】
(1)先求出函數的定義域和導數,由已知函數在處取得極值,得到,即可求解的值;(2)由(1)得,定義域為,分,和三種情況討論,分別求得函數的最小值,即可得到結論;(3)由,得到,把,只需證,構造新函數,利用導數求得函數的單調性與最值,即可求解.【詳解】(1)由,定義域為,則,因為函數在處取得極值,所以,即,解得,經檢驗,滿足題意,所以.(2)由(1)得,定義域為,當時,有,在區間上單調遞增,最小值為,當時,由得,且,當時,,單調遞減;當時,,單調遞增;所以在區間上單調遞增,最小值為,當時,則,當時,,單調遞減;當時,,單調遞增;所以在處取得最小值,綜上可得:當時,在區間上的最小值為1,當時,在區間上的最小值為.(3)由得,當時,,則,欲證,只需證,即證,即,設,則,當時,,在區間上單調遞增,當時,,即,故,即當時,恒有成立.【點睛】本題主要考查導數在函數中的綜合應用,以及不等式的證明,著重考查了轉化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構造新函數,利用導數研究函數的單調性,求出最值,進而得出相應的含參不等式,從而求出參數的取值范圍;也可分離變量,構造新函數,直接把問題轉化為函數的最值問題.18.(1)(2)【解析】
(1)先利用等比數列的性質,可分別求出的值,從而可求出數列的通項公式;(2)利用錯位相減求和法可求出數列的前項和.【詳解】解:(1)由是遞增等比數列,,聯立,解得或,因為數列是遞增數列,所以只有符合題意,則,結合可得,∴數列的通項公式:;(2)由,∴;∴;那么,①則,②將②﹣①得:.【點睛】本題考查了等比數列的性質,考查了等比數列的通項公式,考查了利用錯位相減法求數列的前項和.19.(1)證明見解析(2)【解析】
(1)要證明平面,只需證明,即可:(2)取中點,連,以為原點,分別為軸建立空間直角坐標系,分別求出與平面的法向量,再利用計算即可.【詳解】(1)∵底面為菱形,∵直棱柱平面.∵平面..平面;(2)如圖,取中點,連,以為原點,分別為軸建立如圖所示空間直角坐標系:,點,設平面的法向量為,,有,令,得又,設直線與平面所成的角為,所以故直線與平面所成的角的正弦值為.【點睛】本題考查線面垂直的證明以及向量法求線面角的正弦值,考查學生的運算求解能力,本題解題關鍵是正確寫出點的坐標.20.(1)(2)【解析】分析:(1)先斷定在曲線上,從而需要求,令,求得結果,注意復合函數求導法則,接著應用點斜式寫出直線的方程;(2)先將函數解析式求出,之后借助于導數研究函數的單調性,從而求得函數在相應區間上的最值.詳解:(Ⅰ)當,.,當,,所以切線方程為.(Ⅱ),,因為,所以.令,,則在單調遞減,因為,所以在上增,在單調遞增.,,因為,所以在區間上的值域為.點睛:該題考查的是有關應用導數研究函數的問題,涉及到的知識點有導數的幾何意義,曲線在某個點處的切線方程的求法,復合函數求導,函數在給定區間上的最值等,在解題的過程中,需要對公式的正確使用.21.(1);(2)【解析】
(1)由向量平行的坐標表示、正
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB31/T 1239-2020餐飲服務單位公筷公勺服務規范
- DB31/T 1152-2019政務服務“一網通辦”電子文件歸檔管理技術規范
- DB31/T 1077-2018醫院消毒社會化供應服務衛生規范
- 室內設計中的材料搭配與應用考核試卷
- 影視道具制作的跨界合作考核試卷
- 2024年新型熱塑彈性體防水卷材成型設備資金申請報告代可行性研究報告
- 本科在讀學生生活費用及撫養費支付協議
- 房屋抵押貸款合同貸款用途變更通知
- 網絡直播平臺主播跨界合作與獨家經紀管理協議
- 2025年中國半胱氨酸及其鹽酸鹽行業市場前景預測及投資價值評估分析報告
- 燃氣公司月度安全生產檢查表
- 護理科研課題申請書
- 行政執法實務講課課件PPT
- DB43∕T 604-2010 日用炻瓷-行業標準
- 《品牌策劃與管理(第4版)》知識點與關鍵詞解釋
- 國家開放大學《水利水電工程造價管理》形考任務1-4參考答案
- 司法局PPT模板
- 軸直線滑臺設計畢業論文
- 泄爆墻施工方案1
- FC西游記后傳金手指
- 飽和蒸汽、過熱蒸汽壓力與溫度、密度對照表
評論
0/150
提交評論