




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省吉安市四校聯考2025屆高二數學第一學期期末質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的光學性質如下:如圖1,從雙曲線右焦點發出的光線經雙曲線鏡面反射,反射光線的反向延長線經過左焦點.我國首先研制成功的“雙曲線新聞燈”,就是利用了雙曲線的這個光學性質.某“雙曲線燈”的軸截面是雙曲線一部分,如圖2,其方程為,分別為其左、右焦點,若從右焦點發出的光線經雙曲線上的點A和點B反射后(,A,B在同一直線上),滿足,則該雙曲線的離心率的平方為()A. B.C. D.2.已知兩條異面直線的方向向量分別是,,則這兩條異面直線所成的角滿足()A. B.C. D.3.函數的單調增區間為()A. B.C. D.4.雅言傳承文明,經典浸潤人生.某市舉辦“中華經典誦寫講大賽”,大賽分為四類:“誦讀中國”經典誦讀大賽、“詩教中國”詩詞講解大賽、“筆墨中國”漢字書寫大賽、“印記中國”學生篆刻大賽.某人決定從這四類比賽中任選兩類參賽,則“誦讀中國”被選中的概率為()A. B.C. D.5.已知F為橢圓C:=1(a>b>0)右焦點,O為坐標原點,P為橢圓C上一點,若|OP|=|OF|,∠POF=120°,則橢圓C的離心率為()A. B.C.-1 D.-16.拋物線的焦點到雙曲線的漸近線的距離是()A. B.C.1 D.7.命題:“,”的否定形式為()A., B.,C., D.,8.在四棱錐中,底面為平行四邊形,為邊的中點,為邊上的一列點,連接,交于,且,其中數列的首項,則()A. B.為等比數列C. D.9.已知命題:,使;命題:,都有,則下列結論正確的是()A.命題“”是真命題: B.命題“”是假命題:C.命題“”是假命題: D.命題“”是假命題10.已知,記M到x軸的距離為a,到y軸的距離為b,到z軸的距離為c,則()A. B.C. D.11.一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,另兩名員工數據不清楚,那么8位員工月工資的中位數不可能是()A.5800 B.6000C.6200 D.640012.函數y=的最大值為Ae-1 B.eC.e2 D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在四棱錐中,平面,底面為矩形,分別為的中點,連接,則點到平面的距離為__________.14.過點作圓的切線,則切線方程為______.15.經過點,,的圓的方程為______.16.設O為坐標原點,F為雙曲線的焦點,過F的直線l與C的兩條漸近線分別交于A,B兩點.若,且的內切圓的半徑為,則C的離心率為____________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題:對任意實數都有恒成立;命題:關于的方程有實數根(1)若命題為假命題,求實數的取值范圍;(2)如果“”為真命題,且“”為假命題,求實數的取值范圍18.(12分)已知函數,.(1)討論函數的單調性;(2)若不等式在上恒成立,求實數的取值范圍.19.(12分)已知單調遞增的等比數列滿足:,且是,的等差中項(1)求數列的通項公式;(2)若,,求20.(12分)已知關于x的不等式,.(1)若,求不等式的解集;(2)若不等式的解集為R,求k的取值范圍.21.(12分)如圖,在四棱錐S?ABCD中,已知四邊形ABCD是邊長為的正方形,點S在底面ABCD上的射影為底面ABCD的中心點O,點P在棱SD上,且△SAC的面積為1(1)若點P是SD的中點,求證:平面SCD⊥平面PAC;(2)在棱SD上是否存在一點P使得二面角P?AC?D的余弦值為?若存在,求出點P的位置;若不存在,說明理由22.(10分)已知函數,.(1)若,求曲線在點處的切線方程;(2)若函數在上是減函數,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設,根據題意可得,由雙曲線定義得、,進而求出(用表示),然后在中,應用勾股定理得出關系,求得離心率【詳解】易知共線,共線,如圖,設,則.因為,所以,則,則,又因為,所以,則,在中,,即,所以.故選:D2、D【解析】利用向量夾角余弦公式直接求解【詳解】解:兩條異面直線的方向向量分別是,,這兩條異面直線所成的角滿足:,,故選:D3、D【解析】先求定義域,再求導數,令解不等式,即可.【詳解】函數的定義域為令,解得故選:D【點睛】本題考查利用導數研究函數的單調性,屬于中檔題.4、B【解析】由已知條件得基本事件總數為種,符合條件的事件數為3中,由古典概型公式直接計算即可.【詳解】從四類比賽中選兩類參賽,共有種選擇,其中“誦讀中國”被選中的情況有3種,即“誦讀中國”和“詩教中國”,“誦讀中國”和“筆墨中國”,“誦讀中國”和“印記中國”,由古典概型公式可得,故選:.5、D【解析】記橢圓的左焦點為,在中,通過余弦定理得出,,根據橢圓的定義可得,進而可得結果.【詳解】記橢圓的左焦點為,在中,可得,在中,可得,故,故,故選:D.6、B【解析】先確定拋物線的焦點坐標,和雙曲線的漸近線方程,再由點到直線的距離公式即可求出結果.【詳解】因為拋物線的焦點坐標為,雙曲線的漸近線方程為,由點到直線的距離公式可得.故選:B7、D【解析】根據含一個量詞的命題的否定方法直接得到結果.【詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【點睛】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結論.8、A【解析】由得,為邊的中點得,設,所以,根據向量相等可判斷A選項;由得是公比為的等比數列,可判斷B選項;代入可判斷C選項;當時可判斷D選項.【詳解】由得,因為為邊的中點,所以,所以設,所以,所以,當時,A選項正確;,由得,是公比為的等比數列,所以,所以,所以,不是常數,故B選項錯誤;所以,由得,故C選項錯誤;當時,,所以,此時為的中點,與重合,即,,故D錯誤.故選:A.9、B【解析】根據正弦函數的性質判斷命題為假命題,由判斷命題為真命題,從而得出答案.【詳解】因為的值域為,所以命題為假命題因為,所以命題為真命題則命題“”是假命題,命題“”是假命題,命題“”是真命題,命題“”是真命題故選:B10、C【解析】分別求出點M在x軸,y軸,z軸上的投影點的坐標,再借助空間兩點間距離公式計算作答.【詳解】設點M在x軸上的投影點,則,而x軸的方向向量,由得:,解得,則,設點M在y軸上的投影點,則,而y軸的方向向量,由得:,解得,則,設點M在z軸上的投影點,則,而z軸的方向向量,由得:,解得,則,所以.故選:C11、D【解析】解:∵一個公司有8名員工,其中6名員工的月工資分別為5200,5300,5500,6100,6500,6600,∴當另外兩名員工的工資都小于5300時,中位數為(5300+5500)÷2=5400,當另外兩名員工的工資都大于5300時,中位數為(6100+6500)÷2=6300,∴8位員工月工資的中位數的取值區間為[5400,6300],∴8位員工月工資的中位數不可能是6400.本題選擇D選項.12、A【解析】,所以函數在上遞增,在上遞減,所以函數的最大值為時,y==故選A點睛:研究函數最值主要根據導數研究函數的單調性,找到最值,分式求導公式要記熟二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用轉化法,根據線面平行的性質,結合三棱錐的體積等積性進行求解即可.【詳解】設是的中點,連接,因為是的中點,所以,因為平面,平面,所以平面,因此點到平面的距離等于點到平面的距離,設為,因為平面,所以,,于是有,底面為矩形,所以有,,因為平面,所以,于是有:,由余弦定理可知:cos∠PEC=所以,因此,,因為,所以,故答案為:14、【解析】求出切點與圓心連線的斜率后可得切線方程.【詳解】因為點在圓上,故切線必垂直于切點與圓心連線,而切點與圓心連線的斜率為,故切線的斜率為,故切線方程為:即.故答案為:.15、【解析】設所求圓的方程為,然后將三個點的坐標代入方程中解方程組求出的值,可得圓的方程【詳解】設所求圓的方程為,則,解得,所以圓的方程為,即,故答案為:16、##【解析】,作出漸近線圖像,由題可知的內切圓圓心在x軸上,過內心作OA和AB的垂線,可得幾何關系,據此即可求解.【詳解】雙曲線漸近線OA與OB如圖所示,OA與OB關于x軸對稱,設△OAB的內切圓圓心為,則M在的平分線上,過點分別作于點于,由,則四邊形為正方形,由焦點到漸近線的距離為得,又,∴,且,∴,∴,則.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)先分別求出命題為真命題和命題為真命題時參數的范圍,則可得當命題為假命題,實數的取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假,再分真,且假,和真,且假兩種情況分別求出參數的范圍,再綜合得到答案.【詳解】命題為真命題:對任意實數都有恒成立或;命題為真命題:關于的方程有實數根;(1)命題為假命題,則實數取值范圍(2)由“”為真命題,且“”為假命題,則命題,一真一假.如果真,且假,有,且,則如果真,且假,有或,且,則綜上,實數的取值范圍為18、(1)時,函數在單調遞增,無減區間;時,函數在單調遞增,在單調遞減.(2).【解析】(1)對求導得到,分和進行討論,判斷出的正負,從而得到的單調性;(2)設函數,分和進行討論,根據的單調性和零點,得到答案.【詳解】解:(1)函數定義域是,,當時,,函數在單調遞增,無減區間;當時,令,得到,即,所以,,單調遞增,,,單調遞減,綜上所述,時,函數在單調遞增,無減區間;時,函數在單調遞增,在單調遞減.(2)由已知在恒成立,令,,可得,則,所以在遞增,所以,①當時,,在遞增,所以成立,符合題意.②當時,,當時,,∴,使,即時,在遞減,,不符合題意.綜上得【點睛】本題考查利用導數討論函數的單調性,根據導數解決不等式恒成立問題,屬于中檔題.19、(1);(2)【解析】(1)將已知條件整理變形為等比數列的首項和公比來表示,解方程組得到基本量,可得到通項公式(2)化簡通項得,根據特點求和時采用錯位相減法求解試題解析:(1)設等比數列的首項為,公比為,依題意,有2()=+,代入,得=8,2分∴+=20∴解之得或4分又單調遞增,∴="2,"=2,∴=2n6分(2),∴①8分∴②∴①-②得=12分考點:1.等比數列通項公式;2.錯位相減求和20、(1)(2)【解析】(1)因式分解后可求不等式的解集.(2)就分類討論后可得的取值范圍.【小問1詳解】時,原不等式即為,其解為.【小問2詳解】不等式的解集為R,當時,則有,解得,綜上,.21、(1)證明見解析(2)存在,點P為棱SD靠近點D的三等分點【解析】(1)由的面積為1,得到,,由,點P為SD的中點,所以,同理可得,根據線面垂直的判斷定理可得平面PAC,再由面面垂直的判斷定理可得答案;(2)存在,分別以OB,OC,OS所在直線為x,y,z軸,建立空間直角坐標系,假設在棱SD上存在點P,設,求出平面PAC、平面ACD的一個法向量,由二面角的向量法可得答案.【小問1詳解】因為點S在底面ABCD上的射影為O,所以平面ABCD,因為四邊形ABCD是邊長為的正方形,所以,又因為的面積為1,所以,,所以,因為,點P為SD的中點,所以,同理可得,因為,AP,平面PAC,所以平面PAC,又平面SCD,∴平面平面PAC【小問2詳解】存在,連接,由平面ABCD,平面ABCD,平面ABCD,又,可得兩兩垂直,分別以所在直線為x,y,z軸,建立空間直角坐標系,如圖,則,,,,假設在棱SD上存在點P使二面角的余弦值為,設,,,所以,,設平面PAC的一個法向量為,則,因為,,所以,令,得,,因為平面ACD的一個法向量為,所以,化簡得,解得或(舍),所以存在P點符合題意,點P為棱SD靠近點D的三等分點22、(1).(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 按摩枕材質分析考核試卷
- 低延遲實時通信-洞察及研究
- 客戶對系統集成項目后續服務滿意度調查考核試卷
- 農機租賃標準國際化推廣策略研究考核試卷
- 兒童娛樂與教育綜合體企業制定與實施新質生產力項目商業計劃書
- 薯條小鋪行業跨境出海項目商業計劃書
- 休閑車配件一站式采購平臺創新創業項目商業計劃書
- 老工廠酒店轉型行業跨境出海項目商業計劃書
- 光伏建筑一體化示范園區企業制定與實施新質生產力項目商業計劃書
- 草原牧場研學營行業跨境出海項目商業計劃書
- 《建筑施工安全檢查標準》JGJ59-2011圖解
- 華為大學人才培養與發展實踐
- 醫療垃圾廢物處理課件
- 公路工程基本建設項目概算、預算編制辦法
- 《煤的發熱量測定方法》ppt課件
- 三寶、四口、五臨邊安全培訓PPT課件
- 護理崗位管理與績效考核-PPT課件
- 電力變壓器損耗水平代號的確定
- 安全責任制考核制度及考核表
- 南開中學小卷數學模擬試卷(共3頁)
- 中國銀行_境外匯款申請表模板(練手)
評論
0/150
提交評論