




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆山東省濟南市歷城區濟南一中數學高一下期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若直線l:ax+by=1(a>0,b>0)平分圓x2+y2﹣x﹣2y=0,則的最小值為()A. B.2 C. D.2.某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數據,繪制了如圖所示的折線圖.根據該折線圖,下列結論錯誤的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩3.中國數學家劉微在《九章算術注》中提出“割圓”之說:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣.”意思是“圓內接正多邊形的邊數無限增加的時候,它的周長的極限是圓的周長,它的面積的極限是圓的面積”.如圖,若在圓內任取一點,則此點取自其內接正六邊形的邊界及其內部的概率為()A. B. C. D.4.若,則下列不等式中不正確的是().A. B. C. D.5.用分層抽樣的方法從10盆紅花和5盆藍花中選出3盆,則所選紅花和藍花的盆數分別為A.2,1 B.1,2 C.0,3 D.3,06.用區間表示不超過的最大整數,如,設,若方程有且只有3個實數根,則正實數的取值范圍為()A. B. C. D.7.過點且與直線垂直的直線方程是()A. B. C. D.8.在△ABC中,已知tan=sinC,則△ABC的形狀為()A.正三角形 B.等腰三角形C.直角三角形 D.等腰直角三角形9.已知向量,,則向量的夾角的余弦值為()A. B. C. D.10.某幾何體的三視圖如圖所示,它的體積為()A.12π B.45π C.57π D.81π二、填空題:本大題共6小題,每小題5分,共30分。11.弧度制是數學上一種度量角的單位制,數學家歐拉在他的著作《無窮小分析概論》中提出把圓的半徑作為弧長的度量單位.已知一個扇形的弧長等于其半徑長,則該扇形圓心角的弧度數是__________.12.函數的最小正周期為.13.在銳角△中,,,,則________14.已知等比數列的公比為,關于的不等式有下列說法:①當吋,不等式的解集②當吋,不等式的解集為③當>0吋,存在公比,使得不等式解集為④存在公比,使得不等式解集為R.上述說法正確的序號是_______.15.若無窮數列的所有項都是正數,且滿足,則______.16.將邊長為2的正沿邊上的高折成直二面角,則三棱錐的外接球的表面積為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在以、、、、、為頂點的五面體中,面是等腰梯形,,面是矩形,平面平面,,.(1)求證:平面平面;(2)若三棱錐的體積為,求的值.18.在中,內角的對邊分別為,且.(1)求角;(2)若,,求的值.19.在中,內角對邊分別為,,,已知.(1)求的值;(2)若,,求的面積.20.已知數列中,..(1)寫出、、;(2)猜想的表達式,并用數學歸納法證明.21.如圖,在中,,,,.(Ⅰ)求AB;(Ⅱ)求AD.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
求得圓心,代入直線的方程,然后利用基本不等式求得的最小值.【詳解】圓的圓心為,由于直線平分圓,故圓心在直線上,即,所以,當且僅當時等號成立.故選:C【點睛】本小題主要考查直線和圓的位置關系,考查利用基本不等式求最小值.2、A【解析】
觀察折線圖可知月接待游客量每年7,8月份明顯高于12月份,且折線圖呈現增長趨勢,高峰都出現在7、8月份,1月至6月的月接待游客量相對于7月至12月波動性更小.【詳解】對于選項A,由圖易知月接待游客量每年7,8月份明顯高于12月份,故A錯;對于選項B,觀察折線圖的變化趨勢可知年接待游客量逐年增加,故B正確;對于選項C,D,由圖可知顯然正確.故選A.【點睛】本題考查折線圖,考查考生的識圖能力,屬于基礎題.3、C【解析】
設出圓的半徑,表示出圓的面積和圓內接正六邊形的面積,即可由幾何概型概率計算公式得解.【詳解】設圓的半徑為則圓的面積為圓內接正六邊形的面積為由幾何概型概率可知,在圓內任取一點,則此點取自其內接正六邊形的邊界及其內部的概率為故選:C【點睛】本題考查了圓的面積及圓內接正六邊形的面積求法,幾何概型概率的計算公式,屬于基礎題.4、D【解析】
先判斷出的大小關系,然后根據不等式的性質以及基本不等式逐項判斷.【詳解】由,得,,,故D不正確,C正確;,,,故A正確;,,,取等號時,故B正確,故選D.【點睛】本題考查利用不等式性質以及基本不等式判斷不等式是否成立,難度一般.注意使用基本不等式計算最值時,取等號的條件一定要記得添加.5、A【解析】
利用分層抽樣的性質直接求解.【詳解】解:用分層抽樣的方法從10盆紅花和5盆藍花中選出3盆,則所選紅花的盆數為:,所選藍花的盆數為:.故選:A.【點睛】本題考查所選紅花和藍花的盆數的求法,考查分層抽樣的性質等基礎知識,考查運算求解能力,是基礎題.6、A【解析】
由方程的根與函數交點的個數問題,結合數形結合的數學思想方法,作圖觀察y={x}的圖象與y=﹣kx+1的圖象有且只有3個交點時k的取值范圍,即可得解.【詳解】方程{x}+kx﹣1=0有且只有3個實數根等價于y={x}的圖象與y=﹣kx+1的圖象有且只有3個交點,當0≤x<1時,{x}=x,當1≤x<2時,{x}=x﹣1,當2≤x<3時,{x}=x﹣2,當3≤x<4時,{x}=x﹣3,以此類推如上圖所示,實數k的取值范圍為:k,即實數k的取值范圍為:(,],故選A.【點睛】本題考查了方程的根與函數交點的個數問題,數形結合的數學思想方法,屬中檔題.7、D【解析】
由已知直線方程求得直線的斜率,再根據兩直線垂直,得到所求直線的斜率,最后用點斜式寫出所求直線的方程.【詳解】已知直線的斜率為:因為兩直線垂直所以所求直線的斜率為又所求直線過點所以所求直線方程為:即:故選:D【點睛】本題主要考查了直線與直線的位置關系及直線方程的求法,還考查了運算求解的能力,屬于基礎題.8、C【解析】
解:因為選C9、C【解析】
先求出向量,再根據向量的數量積求出夾角的余弦值.【詳解】∵,∴.設向量的夾角為,則.故選C.【點睛】本題考查向量的線性運算和向量夾角的求法,解題的關鍵是求出向量的坐標,然后根據數量積的定義求解,注意計算的準確性,屬于基礎題.10、C【解析】由三視圖可知,此組合體上部是一個母線長為5,底面圓半徑是3的圓錐,下部是一個高為5,底面半徑是3的圓柱故它的體積是5×π×32+π×32×=57π故選C二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】設扇形的弧長和半徑長為,由弧度制的定義可得,該扇形圓心角的弧度數是.12、【解析】試題分析:,所以函數的周期等于考點:1.二倍角降冪公式;2.三角函數的周期.13、【解析】
由正弦定理,可得,求得,即可求解,得到答案.【詳解】由正弦定理,可得,所以,又由△為銳角三角形,所以.故答案為:.【點睛】本題主要考查了正弦定理得應用,其中解答中熟記正弦定理,準確計算是解答的關鍵,著重考查了計算能力,屬于基礎題.14、③【解析】
利用等比數列的通項公式,解不等式后可得結論.【詳解】由題意,不等式變為,即,若,則,當或時解為,當或時,解為,時,解為;若,則,當或時解為,當或時,解為,時,不等式無解.對照A、B、C、D,只有C正確.故選C.【點睛】本題考查等比數列的通項公式,考查解一元二次不等式,難點是解一元二次不等式,注意分類討論,本題中需對二次項系數分正負,然后以要對兩根分大小,另外還有一個是相應的一元二次方程是否有實數解分類(本題已經有兩解,不需要這個分類).15、【解析】
先由作差法求出數列的通項公式為,即可計算出,然后利用常用數列的極限即可計算出的值.【詳解】當時,,可得;當時,由,可得,上式下式得,得,也適合,則,.所以,.因此,.故答案為:.【點睛】本題考查利用作差法求數列通項,同時也考查了數列極限的計算,考查計算能力,屬于中等題.16、【解析】
解:根據題意可知三棱錐B﹣ACD的三條側棱BD、DC、DA兩兩互相垂直,所以它的外接球就是它擴展為長方體的外接球,∵長方體的對角線的長為:,∴球的直徑是,半徑為,∴三棱錐B﹣ACD的外接球的表面積為:4π5π.故答案為5π考點:外接球.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)由面面垂直的性質定理得出平面,可得出,再推導出,利用線面垂直的判定定理得出平面,然后利用面面垂直的判定定理可得出平面平面;(2)推導出平面,計算出的面積,然后利用錐體體積公式可求得三棱錐的體積,進而得解.【詳解】(1)因為四邊形是矩形,故,又平面平面,平面平面,平面,所以平面,又面,所以,在等腰梯形中,,,因,故,,即,又,故平面,平面,所以平面平面;(2)的面積為,,平面,所以,平面,,故.【點睛】本題考查面面垂直的證明,同時也考查了利用三棱錐體積求參數,考查推理能力與計算能力,屬于中等題.18、(1)(2),【解析】
(1)由正弦定理可得,求得,即可解得角;(2)由余弦定理,列出方程,即可求解.【詳解】(1)由題意知,由正弦定理可得,因為,則,所以,即,又由,所以.(2)由(1)知和,,由余弦定理,即,即,解得,所以.【點睛】本題主要考查了正弦定理、余弦定理的應用,其中解答中熟記三角形的正弦、余弦定理,準確計算是解答的掛念,著重考查了推理與計算能力,屬于基礎題.19、(1)2(2)【解析】
(1)在題干等式中利用邊化角思想,結合兩角和的正弦公式、內角和定理以及誘導公式計算出,再利用角化邊的思想可得出的比值;(2)由(1)中的結果,結合余弦定理求出和的值,再利用同角三角函數的平方關系求出,最后利用三角形的面積公式求出的面積.【詳解】(1)由正弦定理得,則,所以,即,化簡可得.又,所以.所以,即.(2)由(1)知.由余弦定理及,,得,.解得,因此因為,且所以因此.【點睛】在解三角形的問題時,要根據已知元素的類型合理選擇正弦定理與余弦定理解三角形,除此之外,在有邊和角的等式中,優先邊化角,利用三角恒等變換思想化簡求解,能起到簡化計算的作用.20、(1),,;(2)猜想,證明見解析.【解析】
(1)利用遞推公式可計算出、、的值;(2)根據數列的前四項可猜想出,然后利用數學歸納法即可證明出猜想成立.【詳解】(1),,則,,;(2)猜想,下面利用數學歸納法證明.假設當時成立,即,那么當時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家具售后部管理制度
- 家電維修業管理制度
- 應急戰備庫管理制度
- 彩箱包裝廠管理制度
- 律師駐法院管理制度
- 心理測量室管理制度
- 快遞健康碼管理制度
- 快餐廳公司管理制度
- 急診手麻醉管理制度
- 成品庫規章管理制度
- 蘇州市昆山市惠民物業管理有限公司招聘筆試真題2024
- 初級銀行從業資格考試《個人貸款》新版真題卷(2025年含答案)
- 民航飛行員招飛心理測試題及答案
- 生地考試測試題及答案
- 《動物保定技術》課件
- 2025年出版:全球市場光伏硅膠總體規模、主要生產商、主要地區、產品和應用細分調研報告
- 北京市朝陽區2023-2024學年四年級下學期語文期末考試卷(含答案)
- GB/T 45385-2025燃氣燃燒器和燃燒器具用安全和控制裝置特殊要求排氣閥
- 留學機構合作協議書范本
- 太極拳教學合同協議
- 家校社協同勞動教育實施現狀與對策研究
評論
0/150
提交評論