




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省保山市施甸縣一中2024屆高三六校第一次聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知某幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖是全等的直角三角形,則該幾何體的各個(gè)面中,最大面的面積為()A.2 B.5 C. D.2.已知雙曲線:(,)的焦距為.點(diǎn)為雙曲線的右頂點(diǎn),若點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.33.已知函數(shù)則函數(shù)的圖象的對(duì)稱軸方程為()A. B.C. D.4.若表示不超過(guò)的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.85.的展開(kāi)式中的項(xiàng)的系數(shù)為()A.120 B.80 C.60 D.406.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.7.若不等式對(duì)于一切恒成立,則的最小值是()A.0 B. C. D.8.已知命題,那么為()A. B.C. D.9.已知是虛數(shù)單位,則復(fù)數(shù)()A. B. C.2 D.10.?dāng)?shù)列滿足:,,,為其前n項(xiàng)和,則()A.0 B.1 C.3 D.411.已知,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn),則正實(shí)數(shù)的取值范圍為()A. B. C. D.12.以下三個(gè)命題:①在勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每10分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是分層抽樣;②若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;③對(duì)分類變量與的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,判斷“與有關(guān)系”的把握越大;其中真命題的個(gè)數(shù)為()A.3 B.2 C.1 D.0二、填空題:本題共4小題,每小題5分,共20分。13.已知集合U={1,3,5,9},A={1,3,9},B={1,9},則?U(A∪B)=________.14.四邊形中,,,,,則的最小值是______.15.已知函數(shù),若關(guān)于x的方程有且只有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是_______________.16.展開(kāi)式中的系數(shù)為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點(diǎn).(1)證明:平面;(2)求幾何體的體積.18.(12分)設(shè)函數(shù),().(1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)a、m的值;(2)若對(duì)任意恒成立,求實(shí)數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論.19.(12分)如圖所示,在四棱錐中,底面是棱長(zhǎng)為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn).(1)求證:平面;(2)求二面角的正切值.20.(12分)已知的內(nèi)角,,的對(duì)邊分別為,,,.(1)若,證明:.(2)若,,求的面積.21.(12分)已知函數(shù).(Ⅰ)若,求曲線在處的切線方程;(Ⅱ)當(dāng)時(shí),要使恒成立,求實(shí)數(shù)的取值范圍.22.(10分)已知函數(shù),.(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;(Ⅱ)求函數(shù)在上的最小值;(Ⅲ)若函數(shù),當(dāng)時(shí),的最大值為,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個(gè)三棱錐,如圖所示,將其放在一個(gè)長(zhǎng)方體中,并記為三棱錐.,,,故最大面的面積為.選D.【點(diǎn)睛】本題主要考查三視圖的識(shí)別,復(fù)雜的三視圖還原為幾何體時(shí),一般借助長(zhǎng)方體來(lái)實(shí)現(xiàn).2、A【解析】
由點(diǎn)到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,掌握漸近線方程與點(diǎn)到直線距離公式是解題基礎(chǔ).3、C【解析】
,將看成一個(gè)整體,結(jié)合的對(duì)稱性即可得到答案.【詳解】由已知,,令,得.故選:C.【點(diǎn)睛】本題考查余弦型函數(shù)的對(duì)稱性的問(wèn)題,在處理余弦型函數(shù)的性質(zhì)時(shí),一般采用整體法,結(jié)合三角函數(shù)的性質(zhì),是一道容易題.4、B【解析】
求出,,,,,,判斷出是一個(gè)以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個(gè)以周期為6的周期數(shù)列,則.故選:B.【點(diǎn)睛】本題考查周期數(shù)列的判斷和取整函數(shù)的應(yīng)用.5、A【解析】
化簡(jiǎn)得到,再利用二項(xiàng)式定理展開(kāi)得到答案.【詳解】展開(kāi)式中的項(xiàng)為.故選:【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力.6、D【解析】
依次將選項(xiàng)中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當(dāng)時(shí),在上不單調(diào),故A不正確;當(dāng)時(shí),在上單調(diào)遞減,故B不正確;當(dāng)時(shí),在上不單調(diào),故C不正確;當(dāng)時(shí),在上單調(diào)遞增,故D正確.故選:D【點(diǎn)睛】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.7、C【解析】
試題分析:將參數(shù)a與變量x分離,將不等式恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)最值問(wèn)題,即可得到結(jié)論.解:不等式x2+ax+1≥0對(duì)一切x∈(0,]成立,等價(jià)于a≥-x-對(duì)于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點(diǎn):不等式的應(yīng)用點(diǎn)評(píng):本題綜合考查了不等式的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題8、B【解析】
利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.【點(diǎn)睛】本題主要考查特稱命題的否定,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.9、A【解析】
根據(jù)復(fù)數(shù)的基本運(yùn)算求解即可.【詳解】.故選:A【點(diǎn)睛】本題主要考查了復(fù)數(shù)的基本運(yùn)算,屬于基礎(chǔ)題.10、D【解析】
用去換中的n,得,相加即可找到數(shù)列的周期,再利用計(jì)算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項(xiàng)分別為1,2,1,-1,-2,-1,所以,.故選:D.【點(diǎn)睛】本題考查周期數(shù)列的應(yīng)用,在求時(shí),先算出一個(gè)周期的和即,再將表示成即可,本題是一道中檔題.11、B【解析】
先利用向量數(shù)量積和三角恒等變換求出,函數(shù)在區(qū)間上恰有個(gè)極值點(diǎn)即為三個(gè)最值點(diǎn),解出,,再建立不等式求出的范圍,進(jìn)而求得的范圍.【詳解】解:令,解得對(duì)稱軸,,又函數(shù)在區(qū)間恰有個(gè)極值點(diǎn),只需解得.故選:.【點(diǎn)睛】本題考查利用向量的數(shù)量積運(yùn)算和三角恒等變換與三角函數(shù)性質(zhì)的綜合問(wèn)題.(1)利用三角恒等變換及輔助角公式把三角函數(shù)關(guān)系式化成或的形式;(2)根據(jù)自變量的范圍確定的范圍,根據(jù)相應(yīng)的正弦曲線或余弦曲線求值域或最值或參數(shù)范圍.12、C【解析】
根據(jù)抽樣方式的特征,可判斷①;根據(jù)相關(guān)系數(shù)的性質(zhì),可判斷②;根據(jù)獨(dú)立性檢驗(yàn)的方法和步驟,可判斷③.【詳解】①根據(jù)抽樣是間隔相同,且樣本間無(wú)明顯差異,故①應(yīng)是系統(tǒng)抽樣,即①為假命題;②兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;兩個(gè)隨機(jī)變量相關(guān)性越弱,則相關(guān)系數(shù)的絕對(duì)值越接近于0;故②為真命題;③對(duì)分類變量與的隨機(jī)變量的觀測(cè)值來(lái)說(shuō),越小,“與有關(guān)系”的把握程度越小,故③為假命題.故選:.【點(diǎn)睛】本題以命題的真假判斷為載體考查了抽樣方法、相關(guān)系數(shù)、獨(dú)立性檢驗(yàn)等知識(shí)點(diǎn),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、{5}【解析】易得A∪B=A={1,3,9},則?U(A∪B)={5}.14、【解析】
在中利用正弦定理得出,進(jìn)而可知,當(dāng)時(shí),取最小值,進(jìn)而計(jì)算出結(jié)果.【詳解】,如圖,在中,由正弦定理可得,即,故當(dāng)時(shí),取到最小值為.故答案為:.【點(diǎn)睛】本題考查解三角形,同時(shí)也考查了常見(jiàn)的三角函數(shù)值,考查邏輯推理能力與計(jì)算能力,屬于中檔題.15、【解析】
畫出函數(shù)的圖象,再畫的圖象,求出一個(gè)交點(diǎn)時(shí)的的值,然后平行移動(dòng)可得有兩個(gè)交點(diǎn)時(shí)的的范圍.【詳解】函數(shù)的圖象如圖所示:因?yàn)榉匠逃星抑挥袃蓚€(gè)不相等的實(shí)數(shù)根,所以圖象與直線有且只有兩個(gè)交點(diǎn)即可,當(dāng)過(guò)點(diǎn)時(shí)兩個(gè)函數(shù)有一個(gè)交點(diǎn),即時(shí),與函數(shù)有一個(gè)交點(diǎn),由圖象可知,直線向下平移后有兩個(gè)交點(diǎn),可得,故答案為:.【點(diǎn)睛】本題主要考查了方程的跟與函數(shù)的圖象交點(diǎn)的轉(zhuǎn)化,數(shù)形結(jié)合的思想,屬于中檔題.16、30【解析】
先將問(wèn)題轉(zhuǎn)化為二項(xiàng)式的系數(shù)問(wèn)題,利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出展開(kāi)式的第項(xiàng),令的指數(shù)分別等于2,4,求出特定項(xiàng)的系數(shù).【詳解】由題可得:展開(kāi)式中的系數(shù)等于二項(xiàng)式展開(kāi)式中的指數(shù)為2和4時(shí)的系數(shù)之和,由于二項(xiàng)式的通項(xiàng)公式為,令,得展開(kāi)式的的系數(shù)為,令,得展開(kāi)式的的系數(shù)為,所以展開(kāi)式中的系數(shù),故答案為30.【點(diǎn)睛】本題考查利用二項(xiàng)式展開(kāi)式的通項(xiàng)公式解決二項(xiàng)展開(kāi)式的特定項(xiàng)的問(wèn)題,考查學(xué)生的轉(zhuǎn)化能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】
(1)由題可知,根據(jù)三角形的中位線的性質(zhì),得出,根據(jù)矩形的性質(zhì)得出,所以,再利用線面平行的判定定理即可證出平面;(2)由于平面平面,根據(jù)面面垂直的性質(zhì),得出平面,從而得出到平面的距離為,結(jié)合棱錐的體積公式,即可求得結(jié)果.【詳解】解:(1)∵,分別為,的中點(diǎn),∴,∵四邊形是矩形,∴,∴,∵平面,平面,∴平面.(2)取,的中點(diǎn),,連接,,,,則,由于為三棱柱,為四棱錐,∵平面平面,∴平面,由已知可求得,∴到平面的距離為,因?yàn)樗倪呅问蔷匦危O(shè)幾何體的體積為,則,∴,即:.【點(diǎn)睛】本題考查線面平行的判定、面面垂直的性質(zhì)和棱錐的體積公式,考查邏輯推理和計(jì)算能力.18、(1),;(2);(3)不能,證明見(jiàn)解析【解析】
(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價(jià)于對(duì)任意恒成立,即時(shí),,利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過(guò)代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進(jìn)行求導(dǎo),研究單調(diào)性,結(jié)合函數(shù)零點(diǎn)存在性定理證明即可.【詳解】(1),,曲線在點(diǎn)處的切線方程為,,解得.(2)記,整理得,由題知,對(duì)任意恒成立,對(duì)任意恒成立,即時(shí),,,解得,當(dāng)時(shí),對(duì)任意,,,,,即在單調(diào)遞增,此時(shí),實(shí)數(shù)的取值范圍為.(3)關(guān)于的方程不可能有三個(gè)不同的實(shí)根,以下給出證明:記,,則關(guān)于的方程有三個(gè)不同的實(shí)根,等價(jià)于函數(shù)有三個(gè)零點(diǎn),,當(dāng)時(shí),,記,則,在單調(diào)遞增,,即,,在單調(diào)遞增,至多有一個(gè)零點(diǎn);當(dāng)時(shí),記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個(gè)零點(diǎn),則至多有兩個(gè)單調(diào)區(qū)間,至多有兩個(gè)零點(diǎn).因此,不可能有三個(gè)零點(diǎn).關(guān)于的方程不可能有三個(gè)不同的實(shí)根.【點(diǎn)睛】本題考查了導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點(diǎn)存在性定理,考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想,屬于難題.19、(1)見(jiàn)證明;(2)【解析】
(1)取PD中點(diǎn)G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點(diǎn)O,連結(jié)PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點(diǎn)G,連結(jié)為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點(diǎn)O,連結(jié)PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點(diǎn)睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計(jì)算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計(jì)算.20、(1)見(jiàn)解析(2)【解析】
(1)由余弦定理及已知等式得出關(guān)系,再由正弦定理可得結(jié)論;(2)由余弦定理和已知條件解得,然后由面積公式計(jì)算.【詳解】解:(1)由余弦定理得,由得到,由正弦定理得.因?yàn)椋裕?)由題意及余弦定理可知,①由得,即,②聯(lián)立①②解得,.所以.【點(diǎn)睛】本題考查利用正余弦定理解三角形.考查三角形面積公式,由已知條件本題主要是應(yīng)用余弦定理求出邊.解題時(shí)要注意對(duì)條件的分析,確定選用的公式.21、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)求函數(shù)的導(dǎo)函數(shù),即可求得切線的斜率,則切線方程得解;(Ⅱ)構(gòu)造函數(shù),對(duì)參數(shù)分類討論,求得函數(shù)的單調(diào)性,以及最值,即可容易求得參數(shù)范圍.【詳解】(Ⅰ)當(dāng)時(shí),,則.所以.又,故所求切線方程為,即.(Ⅱ)依題意,得,即恒成立.令,則.①當(dāng)時(shí),因?yàn)椋缓项}意.②當(dāng)時(shí),令,得,,顯然.令,得或;令,得.所以函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是.當(dāng)時(shí),,,所以,只需,所以,所以實(shí)數(shù)的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)的幾何意義求切線方程,以及利用導(dǎo)數(shù)研究恒成立問(wèn)題,屬綜合中檔題.22、(Ⅰ)(Ⅱ)見(jiàn)解析;(Ⅲ)見(jiàn)解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點(diǎn)斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當(dāng)時(shí),在上單調(diào)遞增.則函數(shù)在上的最小值是(2)當(dāng)時(shí),令,即,令,即(i)當(dāng),即時(shí),在上單調(diào)遞增,所以在上的最小值是(ii)當(dāng),即時(shí),由的單調(diào)性可得在上的最小值是(iii)當(dāng),即時(shí),在上單調(diào)遞減,在上的最小值是(Ⅲ)當(dāng)時(shí),令,則是單調(diào)遞減函數(shù).因?yàn)椋栽谏洗嬖冢沟茫从懻摽傻迷谏蠁握{(diào)遞增,在上單調(diào)遞減.所以當(dāng)時(shí),取得最大值是因?yàn)椋杂纱丝勺C試題解析:(Ⅰ)因?yàn)楹瘮?shù),且,所以
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CCS 040-2023煤礦智能化管理體系規(guī)范
- T/GIEHA 049-2022深紫外線物表快速消毒設(shè)備技術(shù)規(guī)范
- T/CAEPI 69-2023固體廢物資源化產(chǎn)物環(huán)境風(fēng)險(xiǎn)評(píng)價(jià)通用指南
- 2025年委托進(jìn)口銷售合同2篇
- T/CCOA 72-2023油莎豆油生產(chǎn)技術(shù)規(guī)范
- 潛在變量模型潛在剖面分析
- 車輛與子女歸女方離婚協(xié)議書(shū)5篇
- XX建筑物資租賃合同2篇
- 農(nóng)村廠區(qū)租賃合同4篇
- 健康促進(jìn)工作課件
- 家具供貨結(jié)算協(xié)議書(shū)
- 2025屆湖南省邵陽(yáng)市高三下學(xué)期第三次聯(lián)考物理試卷(含答案)
- 2025年公證員資格考試全國(guó)范圍真題及答案
- 叉車作業(yè)安全協(xié)議書(shū)
- 房屋解除轉(zhuǎn)讓協(xié)議書(shū)
- 小學(xué)生美術(shù)講課課件
- 新聞采訪考試試題及答案
- 2025年北京市西城區(qū)高三語(yǔ)文二模考試卷附答案解析
- 2024-2025學(xué)年滬教版(五四學(xué)制)七年級(jí)英語(yǔ)下學(xué)期考點(diǎn)突破:書(shū)面表達(dá)15篇(含答案)
- JJF 2215-2025移動(dòng)源排放顆粒物數(shù)量檢測(cè)儀校準(zhǔn)規(guī)范
- 選擇性必修1 《當(dāng)代國(guó)際政治與經(jīng)濟(jì)》(主觀題答題模版)
評(píng)論
0/150
提交評(píng)論