2024屆山西省忻州實驗中學高三下學期一??荚嚁祵W試題含解析_第1頁
2024屆山西省忻州實驗中學高三下學期一模考試數學試題含解析_第2頁
2024屆山西省忻州實驗中學高三下學期一模考試數學試題含解析_第3頁
2024屆山西省忻州實驗中學高三下學期一模考試數學試題含解析_第4頁
2024屆山西省忻州實驗中學高三下學期一模考試數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山西省忻州實驗中學高三下學期一??荚嚁祵W試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設集合,,則()A. B.C. D.2.在的展開式中,含的項的系數是()A.74 B.121 C. D.3.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形4.我國古代數學巨著《九章算術》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數是()A.2 B.3 C.4 D.15.已知定義在R上的偶函數滿足,當時,,函數(),則函數與函數的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.66.以下三個命題:①在勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;②若兩個變量的線性相關性越強,則相關系數的絕對值越接近于1;③對分類變量與的隨機變量的觀測值來說,越小,判斷“與有關系”的把握越大;其中真命題的個數為()A.3 B.2 C.1 D.07.已知函數是上的減函數,當最小時,若函數恰有兩個零點,則實數的取值范圍是()A. B.C. D.8.在平行六面體中,M為與的交點,若,,則與相等的向量是()A. B. C. D.9.已知數列為等比數列,若,且,則()A. B.或 C. D.10.據國家統計局發布的數據,2019年11月全國CPI(居民消費價格指數),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權重,根據該圖,下列結論錯誤的是()A.CPI一籃子商品中所占權重最大的是居住B.CPI一籃子商品中吃穿住所占權重超過50%C.豬肉在CPI一籃子商品中所占權重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為0.18%11.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.12.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數的取值范圍為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.甲,乙兩隊參加關于“一帶一路”知識競賽,甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,若兩隊各出一名隊員進行比賽,則出場的兩名運動員編號相同的概率為______.14.在平面直角坐標系中,已知圓及點,設點是圓上的動點,在中,若的角平分線與相交于點,則的取值范圍是_______.15.在中,若,則的范圍為________.16.在平面直角坐標系xOy中,己知直線與函數的圖象在y軸右側的公共點從左到右依次為,,…,若點的橫坐標為1,則點的橫坐標為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)一酒企為擴大生產規模,決定新建一個底面為長方形的室內發酵館,發酵館內有一個無蓋長方體發酵池,其底面為長方形(如圖所示),其中.結合現有的生產規模,設定修建的發酵池容積為450米,深2米.若池底和池壁每平方米的造價分別為200元和150元,發酵池造價總費用不超過65400元(1)求發酵池邊長的范圍;(2)在建發酵館時,發酵池的四周要分別留出兩條寬為4米和米的走道(為常數).問:發酵池的邊長如何設計,可使得發酵館占地面積最小.18.(12分)已知等差數列的前n項和為,,公差,、、成等比數列,數列滿足.(1)求數列,的通項公式;(2)已知,求數列的前n項和.19.(12分)已知橢圓C的離心率為且經過點(1)求橢圓C的方程;(2)過點(0,2)的直線l與橢圓C交于不同兩點A、B,以OA、OB為鄰邊的平行四邊形OAMB的頂點M在橢圓C上,求直線l的方程.20.(12分)在平面四邊形中,已知,.(1)若,求的面積;(2)若求的長.21.(12分)某生物硏究小組準備探究某地區蜻蜓的翼長分布規律,據統計該地區蜻蜓有兩種,且這兩種的個體數量大致相等,記種蜻蜓和種蜻蜓的翼長(單位:)分別為隨機變量,其中服從正態分布,服從正態分布.(Ⅰ)從該地區的蜻蜓中隨機捕捉一只,求這只蜻蜓的翼長在區間的概率;(Ⅱ)記該地區蜻蜓的翼長為隨機變量,若用正態分布來近似描述的分布,請你根據(Ⅰ)中的結果,求參數和的值(精確到0.1);(Ⅲ)在(Ⅱ)的條件下,從該地區的蜻蜓中隨機捕捉3只,記這3只中翼長在區間的個數為,求的分布列及數學期望(分布列寫出計算表達式即可).注:若,則,,.22.(10分)已知正數x,y,z滿足xyzt(t為常數),且的最小值為,求實數t的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

解出集合,利用交集的定義可求得集合.【詳解】因為,又,所以.故選:A.【點睛】本題考查交集的計算,同時也考查了一元二次不等式的求解,考查計算能力,屬于基礎題.2、D【解析】

根據,利用通項公式得到含的項為:,進而得到其系數,【詳解】因為在,所以含的項為:,所以含的項的系數是的系數是,,故選:D【點睛】本題主要考查二項展開式及通項公式和項的系數,還考查了運算求解的能力,屬于基礎題,3、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質及推論.4、B【解析】

將問題轉化為等比數列問題,最終變為求解等比數列基本量的問題.【詳解】根據實際問題可以轉化為等比數列問題,在等比數列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數列的實際應用,難度較易.熟悉等比數列中基本量的計算,對于解決實際問題很有幫助.5、B【解析】

由函數的性質可得:的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,由函數圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【詳解】由偶函數滿足,可得的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,函數的圖像與函數()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【點睛】本題主要考查了函數的性質,考查了數形結合的思想,掌握函數的性質是解題的關鍵,屬于中檔題.6、C【解析】

根據抽樣方式的特征,可判斷①;根據相關系數的性質,可判斷②;根據獨立性檢驗的方法和步驟,可判斷③.【詳解】①根據抽樣是間隔相同,且樣本間無明顯差異,故①應是系統抽樣,即①為假命題;②兩個隨機變量相關性越強,則相關系數的絕對值越接近于1;兩個隨機變量相關性越弱,則相關系數的絕對值越接近于0;故②為真命題;③對分類變量與的隨機變量的觀測值來說,越小,“與有關系”的把握程度越小,故③為假命題.故選:.【點睛】本題以命題的真假判斷為載體考查了抽樣方法、相關系數、獨立性檢驗等知識點,屬于基礎題.7、A【解析】

首先根據為上的減函數,列出不等式組,求得,所以當最小時,,之后將函數零點個數轉化為函數圖象與直線交點的個數問題,畫出圖形,數形結合得到結果.【詳解】由于為上的減函數,則有,可得,所以當最小時,,函數恰有兩個零點等價于方程有兩個實根,等價于函數與的圖像有兩個交點.畫出函數的簡圖如下,而函數恒過定點,數形結合可得的取值范圍為.故選:A.【點睛】該題考查的是有關函數的問題,涉及到的知識點有分段函數在定義域上單調減求參數的取值范圍,根據函數零點個數求參數的取值范圍,數形結合思想的應用,屬于中檔題目.8、D【解析】

根據空間向量的線性運算,用作基底表示即可得解.【詳解】根據空間向量的線性運算可知因為,,則即,故選:D.【點睛】本題考查了空間向量的線性運算,用基底表示向量,屬于基礎題.9、A【解析】

根據等比數列的性質可得,通分化簡即可.【詳解】由題意,數列為等比數列,則,又,即,所以,,.故選:A.【點睛】本題考查了等比數列的性質,考查了推理能力與運算能力,屬于基礎題.10、D【解析】

A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統計圖的識別與應用,還考查了理解辨析的能力,屬于基礎題.11、B【解析】

連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.12、C【解析】

因為,,所以根據正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數的取值范圍為,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

出場運動員編號相同的事件顯然有3種,計算出總的基本事件數,由古典概型概率計算公式求得答案.【詳解】甲隊有編號為1,2,3的三名運動員,乙隊有編號為1,2,3,4的四名運動員,出場的兩名運動員編號相同的事件數為3,出現的基本事件總數,則出場的兩名運動員編號相同的概率為.故答案為:【點睛】本題考查求古典概率的概率問題,屬于基礎題.14、【解析】

由角平分線成比例定理推理可得,進而設點表示向量構建方程組表示點P坐標,代入圓C方程即可表示動點Q的軌跡方程,再由將所求視為該圓上的點與原點間的距離,所以其最值為圓心到原點的距離加減半徑.【詳解】由題可構建如圖所示的圖形,因為AQ是的角平分線,由角平分線成比例定理可知,所以.設點,點,即,則,所以.又因為點是圓上的動點,則,故點Q的運功軌跡是以為圓心為半徑的圓,又即為該圓上的點與原點間的距離,因為,所以故答案為:【點睛】本題考查與圓有關的距離的最值問題,常常轉化到圓心的距離加減半徑,還考查了求動點的軌跡方程,屬于中檔題.15、【解析】

借助正切的和角公式可求得,即則通過降冪擴角公式和輔助角公式可化簡,由,借助正弦型函數的圖象和性質即可解得所求.【詳解】,所以,.因為,所以,所以.故答案為:.【點睛】本題考查了三角函數的化簡,重點考查學生的計算能力,難度一般.16、1【解析】

當時,得,或,依題意可得,可求得,繼而可得答案.【詳解】因為點的橫坐標為1,即當時,,所以或,又直線與函數的圖象在軸右側的公共點從左到右依次為,,所以,故,所以函數的關系式為.當時,(1),即點的橫坐標為1,為二函數的圖象的第二個公共點.故答案為:1.【點睛】本題考查三角函數關系式的恒等變換、正弦型函數的性質的應用,主要考查學生的運算能力及思維能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)當時,,米時,發酵館的占地面積最小;當時,時,發酵館的占地面積最??;當時,米時,發酵館的占地面積最小.【解析】

(1)設米,總費用為,解即可得解;(2)結合(1)可得占地面積結合導函數分類討論即可求得最值.【詳解】(1)由題意知:矩形面積米,設米,則米,由題意知:,得,設總費用為,則,解得:,又,故,所以發酵池邊長的范圍是不小于15米,且不超過25米;(2)設發酵館的占地面積為由(1)知:,①時,,在上遞增,則,即米時,發酵館的占地面積最?。虎跁r,,在上遞減,則,即米時,發酵館的占地面積最??;③時,時,,遞減;時,遞增,因此,即時,發酵館的占地面積最?。痪C上所述:當時,,米時,發酵館的占地面積最?。划敃r,時,發酵館的占地面積最??;當時,米時,發酵館的占地面積最小.【點睛】此題考查函數模型的應用,關鍵在于根據題意恰當地建立模型,利用函數性質討論最值取得的情況.18、(1),();(2).【解析】

(1)根據是等差數列,,、、成等比數列,列兩個方程即可求出,從而求得,代入化簡即可求得;(2)化簡后求和為裂項相消求和,分組求和即可,注意討論公比是否為1.【詳解】(1)由題意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①當時,.②當時,.【點睛】此題等差數列的通項公式的求解,裂項相消求和等知識點,考查了化歸和轉化思想,屬于一般性題目.19、(1)(2)【解析】

(1)根據橢圓的離心率、橢圓上點的坐標以及列方程,由此求得,進而求得橢圓的方程.(2)設出直線的方程,聯立直線的方程和橢圓的方程,寫出韋達定理.根據平行四邊形的性質以及向量加法的幾何意義得到,由此求得點的坐標,將的坐標代入橢圓方程,化簡后可求得直線的斜率,由此求得直線的方程.【詳解】(1)由橢圓的離心率為,點在橢圓上,所以,且解得,所以橢圓的方程為.(2)顯然直線的斜率存在,設直線的斜率為,則直線的方程為,設,由消去得,所以,由已知得,所以,由于點都在橢圓上,所以,展開有,又,所以,經檢驗滿足,故直線的方程為.【點睛】本小題主要考查根據橢圓的離心率和橢

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論