




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省句容高級中學高三第六次模擬考試數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(a>0,b>0)的右焦點為F,若過點F且傾斜角為60°的直線l與雙曲線的右支有且只有一個交點,則此雙曲線的離心率e的取值范圍是()A. B.(1,2), C. D.2.當時,函數的圖象大致是()A. B.C. D.3.若執行如圖所示的程序框圖,則輸出的值是()A. B. C. D.44.已知雙曲線(,),以點()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A. B. C. D.5.已知函數,要得到函數的圖象,只需將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度6.已知為等腰直角三角形,,,為所在平面內一點,且,則()A. B. C. D.7.已知三棱柱()A. B. C. D.8.已知函數滿足=1,則等于()A.- B. C.- D.9.已知復數z滿足(i為虛數單位),則在復平面內復數z對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.在中,已知,,,為線段上的一點,且,則的最小值為()A. B. C. D.11.設為非零實數,且,則()A. B. C. D.12.兩圓和相外切,且,則的最大值為()A. B.9 C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.設函數,當時,記最大值為,則的最小值為______.14.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.15.已知向量,,且,則________.16.已知拋物線的焦點為,其準線與坐標軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)討論的單調性;(2)若,設,證明:,,使.18.(12分)已知函數,曲線在點處的切線方程為求a,b的值;證明:.19.(12分)《山東省高考改革試點方案》規定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數外3門統考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低劃分為、、、、、、、共8個等級.參照正態分布原則,確定各等級人數所占比例分別為、、、、、、、.選考科目成績計入考生總成績時,將至等級內的考生原始成績,依照等比例轉換法則,分別轉換到、、、、、、、八個分數區間,得到考生的等級成績.某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態分布.(1)求物理原始成績在區間的人數;(2)按高考改革方案,若從全省考生中隨機抽取3人,記表示這3人中等級成績在區間的人數,求的分布列和數學期望.(附:若隨機變量,則,,)20.(12分)已知函數,.(1)判斷函數在區間上的零點的個數;(2)記函數在區間上的兩個極值點分別為、,求證:.21.(12分)在直角坐標系中,曲線上的任意一點到直線的距離比點到點的距離小1.(1)求動點的軌跡的方程;(2)若點是圓上一動點,過點作曲線的兩條切線,切點分別為,求直線斜率的取值范圍.22.(10分)已知函數.(1)若函數,求的極值;(2)證明:.(參考數據:)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率.根據這個結論可以求出雙曲線離心率的取值范圍.【詳解】已知雙曲線的右焦點為,若過點且傾斜角為的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,,離心率,,故選:.【點睛】本題考查雙曲線的性質及其應用,解題時要注意挖掘隱含條件.2、B【解析】由,解得,即或,函數有兩個零點,,不正確,設,則,由,解得或,由,解得:,即是函數的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數的解析式、定義域、值域、單調性,導數的應用以及數學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據函數的定義域、值域、單調性、奇偶性、特殊點以及時函數圖象的變化趨勢,利用排除法,將不合題意選項一一排除.3、D【解析】
模擬程序運行,觀察變量值的變化,得出的變化以4為周期出現,由此可得結論.【詳解】;如此循環下去,當時,,此時不滿足,循環結束,輸出的值是4.故選:D.【點睛】本題考查程序框圖,考查循環結構.解題時模擬程序運行,觀察變量值的變化,確定程序功能,可得結論.4、A【解析】
求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點,且,則可根據圓心到漸近線距離為列出方程,求解離心率.【詳解】不妨設雙曲線的一條漸近線與圓交于,因為,所以圓心到的距離為:,即,因為,所以解得.故選A.【點睛】本題考查雙曲線的簡單性質的應用,考查了轉化思想以及計算能力,屬于中檔題.對于離心率求解問題,關鍵是建立關于的齊次方程,主要有兩個思考方向,一方面,可以從幾何的角度,結合曲線的幾何性質以及題目中的幾何關系建立方程;另一方面,可以從代數的角度,結合曲線方程的性質以及題目中的代數的關系建立方程.5、A【解析】
根據函數圖像平移原則,即可容易求得結果.【詳解】因為,故要得到,只需將向左平移個單位長度.故選:A.【點睛】本題考查函數圖像平移前后解析式的變化,屬基礎題.6、D【解析】
以AB,AC分別為x軸和y軸建立坐標系,結合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數量積的運算,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.7、C【解析】因為直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC為過底面ABC的截面圓的直徑.取BC中點D,則OD⊥底面ABC,則O在側面BCC1B1內,矩形BCC1B1的對角線長即為球直徑,所以2R==13,即R=8、C【解析】
設的最小正周期為,可得,則,再根據得,又,則可求出,進而可得.【詳解】解:設的最小正周期為,因為,所以,所以,所以,又,所以當時,,,因為,整理得,因為,,,則所以.故選:C.【點睛】本題考查三角形函數的周期性和對稱性,考查學生分析能力和計算能力,是一道難度較大的題目.9、D【解析】
根據復數運算,求得,再求其對應點即可判斷.【詳解】,故其對應點的坐標為.其位于第四象限.故選:D.【點睛】本題考查復數的運算,以及復數對應點的坐標,屬綜合基礎題.10、A【解析】
在中,設,,,結合三角形的內角和及和角的正弦公式化簡可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標系,根據已知條件結合向量的坐標運算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設,,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標系,則、、,為線段上的一點,則存在實數使得,,設,,則,,,,,消去得,,所以,,當且僅當時,等號成立,因此,的最小值為.故選:A.【點睛】本題是一道構思非常巧妙的試題,綜合考查了三角形的內角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關鍵是理解是一個單位向量,從而可用、表示,建立、與參數的關系,解決本題的第二個關鍵點在于由,發現為定值,從而考慮利用基本不等式求解最小值,考查計算能力,屬于難題.11、C【解析】
取,計算知錯誤,根據不等式性質知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.【點睛】本題考查了不等式性質,意在考查學生對于不等式性質的靈活運用.12、A【解析】
由兩圓相外切,得出,結合二次函數的性質,即可得出答案.【詳解】因為兩圓和相外切所以,即當時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關系求參數,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
易知,設,,利用絕對值不等式的性質即可得解.【詳解】,設,,令,當時,,所以單調遞減令,當時,,所以單調遞增所以當時,,,則則,即故答案為:.【點睛】本題考查函數最值的求法,考查絕對值不等式的性質,考查轉化思想及邏輯推理能力,屬于難題.14、【解析】
先由題意設向量的坐標,再結合平面向量數量積的運算及不等式可得解.【詳解】由是單位向量.若,,設,則,,又,則,則,則,又,所以,(當或時取等)即的取值范圍是,,故答案為:,.【點睛】本題考查了平面向量數量積的坐標運算,意在考查學生對這些知識的理解掌握水平.15、【解析】
根據垂直向量的坐標表示可得出關于實數的等式,即可求得實數的值.【詳解】,且,則,解得.故答案為:.【點睛】本題考查利用向量垂直求參數,涉及垂直向量的坐標表示,考查計算能力,屬于基礎題.16、【解析】
求出拋物線焦點坐標,由,結合向量的坐標運算得,直線方程為,代入拋物線方程后應用韋達定理得,,從而可求得,得斜率.【詳解】由得,即聯立得解得或,∴.故答案為:.【點睛】本題考查直線與拋物線相交,考查向量的線性運算的坐標表示.直線方程與拋物線方程聯立后消元,應用韋達定理是解決直線與拋物線相交問題的常用方法.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)證明見解析.【解析】
(1),分,,,四種情況討論即可;(2)問題轉化為,利用導數找到與即可證明.【詳解】(1).①當時,恒成立,當時,;當時,,所以,在上是減函數,在上是增函數.②當時,,.當時,;當時,;當時,,所以,在上是減函數,在上是增函數,在上是減函數.③當時,,則在上是減函數.④當時,,當時,;當時,;當時,,所以,在上是減函數,在上是增函數,在上是減函數.(2)由題意,得.由(1)知,當,時,,.令,,故在上是減函數,有,所以,從而.,,則,令,顯然在上是增函數,且,,所以存在使,且在上是減函數,在上是增函數,,所以,所以,命題成立.【點睛】本題考查利用導數研究函數的單調性以及證明不等式的問題,考查學生邏輯推理能力,是一道較難的題.18、(1);(2)見解析【解析】分析:第一問結合導數的幾何意義以及切點在切線上也在函數圖像上,從而建立關于的等量關系式,從而求得結果;第二問可以有兩種方法,一是將不等式轉化,構造新函數,利用導數研究函數的最值,從而求得結果,二是利用中間量來完成,這樣利用不等式的傳遞性來完成,再者這種方法可以簡化運算.詳解:(1)解:,由題意有,解得(2)證明:(方法一)由(1)知,.設則只需證明,設則,在上單調遞增,,使得且當時,,當時,當時,,單調遞減當時,,單調遞增,由,得,,設,,當時,,在單調遞減,,因此(方法二)先證當時,,即證設,則,且,在單調遞增,在單調遞增,則當時,(也可直接分析顯然成立)再證設,則,令,得且當時,,單調遞減;當時,,單調遞增.,即又,點睛:該題考查的是有關利用導數研究函數的綜合問題,在求解的過程中,涉及到的知識點有導數的幾何意義,有關切線的問題,還有就是應用導數證明不等式,可以構造新函數,轉化為最值問題來解決,也可以借用不等式的傳遞性,借助中間量來完成.19、(Ⅰ)1636人;(Ⅱ)見解析.【解析】
(Ⅰ)根據正態曲線的對稱性,可將區間分為和兩種情況,然后根據特殊區間上的概率求出成績在區間內的概率,進而可求出相應的人數;(Ⅱ)由題意得成績在區間[61,80]的概率為,且,由此可得的分布列和數學期望.【詳解】(Ⅰ)因為物理原始成績,所以.所以物理原始成績在(47,86)的人數為(人).(Ⅱ)由題意得,隨機抽取1人,其成績在區間[61,80]內的概率為.所以隨機抽取三人,則的所有可能取值為0,1,2,3,且,所以,,,.所以的分布列為0123所以數學期望.【點睛】(1)解答第一問的關鍵是利用正態分布的三個特殊區間表示所求概率的區間,再根據特殊區間上的概率求解,解題時注意結合正態曲線的對稱性.(2)解答第二問的關鍵是判斷出隨機變量服從二項分布,然后可得分布列及其數學期望.當被抽取的總體的容量較大時,抽樣可認為是等可能的,進而可得隨機變量服從二項分布.20、(1);(2)見解析.【解析】
(1)利用導數分析函數在區間上的單調性與極值,結合零點存在定理可得出結論;(2)設函數的極大值點和極小值點分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數的單調性推導出,再利用正弦函數的單調性可得出結論.【詳解】(1),,,當時,,,,則函數在上單調遞增;當時,,,,則函數在上單調遞減;當時,,,,則函數在上單調遞增.,,,,.所以,函數在與不存在零點,在區間和上各存在一個零點.綜上所述,函數在區間上的零點的個數為;(2),.由(1)得,在區間與上存在零點,所以,函數在區間與上各存在一個極值點、,且,,且滿足即,,,又,即,,,,,由在上單調遞增,得,再由在上單調遞減,得,即.【點睛】本題考查利用導數研究函數的零點個數問題,同時也考查了利用導數證明不等式,考查分析問題和解決問題的能力,屬于難題.21、(1);(2)【解析】
(1)設,根據題意可得點的軌跡方程滿足的等式,化簡即可求得動點的軌跡的方程;(2)設出切線的斜率分別為,切點,,點,則可得過點的拋物線的切線方程為,聯立拋物線方程并化簡,由相切時可得兩條切線斜率關系;由拋物線方程求得導函數,并由導數的幾何意義并代入拋物線方程表示出,可求得,結合點滿足的方程可得的取值范圍,即可求得的范圍.【詳解】(1)設點,∵點到直線的距離等于,∴,化簡得,∴動點的軌跡的方程為.(2)由題意可知,的斜率都存在,分別設為,切點,,設點,過點的拋物線的切線方程為,聯立,化簡可得,∴,即,∴,.由,求得導函數,∴,,,∴,因為點滿足,由圓的性質可得,∴,即直線斜率的取值范圍為.【點睛】本題考查了動點軌跡方程的求法,直線與拋物線相切的性質及應用,導函數的幾何意義及應用,點和圓位置關系求參數的取值范圍,屬于中檔題.22、(1)見解析;(1)見證明【解析】
(1)求出函數的導數,解關于導函數的不等式,求出函數的單調區間,從而求出函數的極值即可;(1)問題轉化為證ex﹣x1﹣xlnx﹣1>0,根據xlnx≤x(x﹣1),問題轉化為只需證明當x>0時,ex﹣1x1+x﹣1>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年養老護理員(中級)養老護理教育與培訓課程開發與評估研究考試試卷
- 2025年醫保知識考試題庫及答案:醫保支付方式改革與醫療服務質量試題
- 新年新氣象的職業轉型思考計劃
- 制定培訓與發展的工作計劃
- 購買土地定金返還協議書
- 牛奶制品供貨合同范本
- 維修玻璃雨棚合同范本
- 父母贈送小孩房子協議書
- 游樂設備合同轉讓協議書
- 倉庫長期發展規劃的總結計劃
- 2025-2030年中國夜視攝像機行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025年中考英語高頻核心詞匯背記手冊
- 危大工程巡視檢查記錄表 (樣表)附危大工程安全監管及檢查要點
- 四川省2025屆高三第二次聯合測評-生物試卷+答案
- 企業消防管理安全制度
- 2024年江蘇省淮安市中考英語真題(原卷版)
- 2025年中國樺木工藝膠合板市場調查研究報告
- 廣西南寧市新民中學2025屆七下生物期末監測試題含解析
- 廣東省廣州市黃埔區2021-2022學年七年級下學期期末英語試題(含答案)
- 《創傷性休克》課件
- 跨境電商勞務合同協議
評論
0/150
提交評論