




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
HoneywellLaboratoriesGoalsandThreats:MotivationsinCIRCADavidJ.MuslinerHoneywellLaboratories(612)951-7599Stillworkingonmy(Michigan)thesistopic.13yearssincefirstCIRCApaper.PresentationOutlineCIRCAoverview:Motivatingdomains.Architecturalmodules.Representations,includingmotivationmechanisms.Automaticallyplanningreal-timereactiveplans.ProbabilisticCIRCA:Motivatingdomains.Representationchanges.Motivationchanges.Planningmethodschanges.LearninginCIRCAMotivatingDomainCharacteristicsTime-critical,hazardous,open-worlddomains:CIRCAguaranteesthatitwillrespondinatimelywaytothreatsinitsenvironment,avoidingfailuresandpursuinggoals.Requiresrobustnessbeyondhumanperformance.Boundedreactivity:CIRCAreasonsexplicitlyaboutthetimeneededforsensingandactions(“perceptual-motorlimits〞).Boundedrationality:CIRCAdynamicallybuildsreactiveplansforonlytheimmediatelyrelevantpartsofthesituation.CIRCAisself-aware,usingmeta-leveldeliberationschedulingtooptimizeitsonlineplanningprocess.Multi-AgentSelf-AdaptiveCIRCAApproach:Automaticsynthesisandadaptationofguaranteedreal-timecontrollers.Performance:Reactivecontrolresponsestothreatsandcontingenciesinmilliseconds.Coordinatedmulti-agentbehaviorsintensofmilliseconds.Dynamicreconfigurationofteammissionplaninlessthan10seconds.DemonstrationsinsimulatedUAVteamdomains:coordinateddefense,dynamicreplanningforcontingencies.Impact:RobustUAVsthatrebuildtheirowncontrolsystemsinresponsetocontingencies(e.g.,damage,targetofopportunity).SmartUAVteamsthatactivelycoordinatedistributedcapabilities/resourcestomaximizemissioneffectiveness.Sponsor:DARPAANTS.Teammate:Univ.ofMichiganGoal:Adaptivereal-timecoordinationandcontrolofmulti-UAVteams.IntelligentReal-TimeCyberSecurityApproach:UseCIRCAtoplanandexecutereactivesecuritycontrollers.Tailorresponsesautomaticallyaccordingtoavailableresources,varyingthreatlevels&securitypolicies.
Performance:Fullyautonomousoperationsdefeatingattacksinmicroseconds.Rapidreconfigurationfordynamicnetworkassets,securitystate,threatprofile.Demonstrationsinrealcomputernetworks.Impact:Real-timeresponsesdefeatmanualandautomatedattackscripts.Automatictradeoffsofsecurityvs.servicelevelandaccessibility.Systemderivesresponsesfornovelattacksbuiltfromknowncomponents.Sponsor:DARPACyberPanel.Teammate:SecureComputingGoal:Automaticreal-timeresponsetocomputersecurityintrusions.ComputingservicesActiveSecurityControllerExecutiveControllerSynthesisModuleCIRCADIANetworks,ComputersAttacks,intrusionsIntrusionAssessmentSecurityTradeoffPlannerCIRCAArchitectureAdaptiveMissionPlanner:Dividesanoverallmissionintomultiplephases,withlimitedperformancegoalsdesignedtomaketheplanningproblemsolvablewithavailabletimeandavailableexecutionresources.Deliberationscheduling.ControllerSynthesisModule:Foreachmissionphase,plansasetofreal-timereactionsaccordingtotheconstraintssentfromAMP.Planning.RealTimeSubsystem:Continuouslyexecutesplannedcontrolreactionsinhardreal-timeenvironment;doesnot“pause〞waitingfornewplans.Execution.AdaptiveMissionPlannerControllerSynthesisModuleRealTimeSystemGeneratecontrollerHowCIRCAWorksAdaptiveMissionPlannerControllerSynthesisModuleRealTimeSystemBreakdownmissionGeneratecontrollerExecutecontrollerif(state-1)thenaction-1if(state-2)thenaction-2...GeneratecontrollerStartGoalExtendingPerformanceGuaranteestoMulti-AgentTeamsAdaptiveMissionPlanner:Negotiatesrolesandresponsibilitiesbetweenagentsincollaborativeteam.ControllerSynthesisModule:Buildscontrollersthatincludecoordinatedactionsbymultipleagents.RealTimeSubsystem:Executescoordinatedcontrollerspredictably,includingdistributedsensingandacting.Onlysystemtoguaranteetimingofend-to-endmulti-agentcoordinatedbehaviorsAdaptiveMissionPlannerControllerSynthesisModuleRealTimeSystemRoles,GoalsReal-TimeReactionsPlannedActions,PlannedNegotiationsAdaptiveMissionPlannerControllerSynthesisModuleRealTimeSystemRealTimeSubsystem(RTS)TheRTSexecutesloopsofTest-ActionPairs(TAPs).TheRTSexecutesinparallelwiththeotherCIRCAmodules.Parallelexecutionpermitsre-planningusingcomputationally-expensivealgorithmswhilepreservingplatformsafety.Special-purposeTAPsusedtodownloadandswitchtonextcontroller.RTSincludesmultipleTAPschedulecachestoholdcontrollersbeforetheyareactivated.ExampleTAP:If(radar-missile-trackingT)thenbegin-evasiveswithmax-delay:300msec.action1action2action1action3action1test1test2test1test3test1test4action4Availableactions“Non-volitional〞transitionsGoalstatedescriptionInitialstatedescriptionTimedAutomataWorldModel&ExecutableReactiveControllerPlanningReal-TimeReactionsTransition-basedinputmodelsimilartoclassicalplanners,butwithtemporalcharacteristicsandnon-volitionaltransitions.TAPCompilerSchedulerStateSpacePlannerVerifierCSMCSMFunctionalComponentsStateSpacePlannerpredictsfuturethreatsandopportunities,plansactionswithtimingconstraintsforfuturestates.Verifierreasonsaboutcomplextemporalmodeltoensurethatallfailuresarepreempted.TAPcompilerreducestimedautomatacontrollermodeltotime-constrainedreactions(Test-ActionPairs).SchedulerbuildsexecutablecycleofTAPstomeettimeconstraints.ControllerSynthesisModuleTAPCompilerSchedulerStateSpacePlannerVerifierCSMAlgorithmCSMessentiallydeterminesastrategyinatimedgameagainstaworst-caseadversary.
Searchloopiterativelyselectsastateandchoosesactionforthatstate.Heuristicsguidechoiceforsafetyandgoalachievement.Approximationsindicatethattimingwillwork.Formalreachabilityanalysiscalledaftereachactionchoice,toconfirmthatallplannedpreemptionswilloccur.Iffailurereachable,pathtofailurecanbeusedtobackjumptomostrecentdecisionrelatedtoanystateonthepath.CIRCAMotivations:ThreatsThreatsrepresentedbytemporaltransitionstofailure(TTFs).CSMonlyreturnsplansthatmakefailureunreachable,using:Prevention:plannedactionsneverallowTTFpreconditionstobecometrue.Preemption:plannedactionswilldefinitelyhappenbeforeTTFs.OKThreatenedFailureSafeRadarThreatDomain-1;;Radar-guidedmissilethreatscanoccuratanytime.(make-instance'event:name"radar_threat":preconds'((radar_missile_trackingF)):postconds'((radar_missile_trackingT)));;Youdieifdon'tdefeatathreatby1200timeunits.(make-instance'temporal:name"radar_threat_kills_you":preconds'((radar_missile_trackingT)):postconds'((failureT)):min-delay1200)RadarThreatDomain-2;;Ittakesnomorethan10timeunitstostartevasives.(make-instance'action:name"begin_evasive":preconds'((pathnormal)):postconds'((pathevasive)):max-delay10);;Wedefeatmissileinbetween250and400timeunits.(make-instance'reliable-temporal:name"evade_radar_missile":preconds'((radar_missile_trackingT)(pathevasive)):postconds'((radar_missile_trackingF)):delay(make-range250400))FAILURERadar-threat-kills-youRadar-missile-trackingTPathnormalRadarThreatKeyConcept:PreventFailurePreemptionasKeyPlanningStructureRadar-missile-trackingFPathnormalBegin-evasiveRadar-missile-trackingTPathevasivepreemptionFAILURERadar-threat-kills-youRadar-missile-trackingTPathnormalRadarThreatNon-MarkovTemporalModelRadar-missile-trackingFPathnormalBegin-evasiveRadar-missile-trackingTPathevasiveRadar-threat-kills-youEvade-radar-missileRadar-missile-trackingFPathevasiveWhynon-Markov?Efficientreactiveplanconstruction.CIRCAMotivations:GoalsRepresentedbydesignationofspecificdesirablefeature/valuepairs.CSMheuristicguidessystemtochooseactionsthattrytoachieve(andre-achieve)maximumnumberofgoalfeatures.Allgoalsare:Conjunctive.Optional.RadarThreatDomain-3;;Yourgoalistocontinueflyingnormalpath.(make-instance‘goal:condition'((pathnormal)))Optionalelementsfordifferentplanners::reward:priorityFAILURERadar-threat-kills-youRadar-missile-trackingTPathnormalRadarThreatGoalsDriveStabilizationRadar-missile-trackingFPathnormalBegin-evasiveRadar-missile-trackingTPathevasiveRadar-threat-kills-youEvade-radar-missileRadar-missile-trackingFPathevasiveRadar-missile-trackingFPathnormalEnd-evasiveDynamicAbstractionPlanningStartwithabstractstatesomittingallnon-goalfeatures.Incrementallyandnon-uniformlyaddfeaturestostateswhenrequired:Whennosafeactionsareapplicable.Whengoalachievementheuristicindicates.Result:plannerdecideswhatitneedstothinkabout,when.Futuredirection:usethistoguidewhatyouattendtoforlearning.non-failurefailureRadar-threat-kills-younon-failurePathnormalPathevasivefailureRadar-threat-kills-youAMPResponsibilitiesDividemissionintophases,subdividingthemasnecessarytohandleresourcerestrictions.NegotiatewithotherAMPstoallocategoalsandthreatsineachphase.Buildproblemconfigurationsforeachphase,todriveCSM.Modifyproblemconfigurations,bothinternallyandvianegotiationwithotherAMPs,tohandleresourcelimitations.Tasksrepresent:Contractstohandlethreatsandgoals.Needtoannounce,bid,award,andplanforthem.Needtogenerateplanforaproblemconfiguration.NeedtodownloadplanforaconfigurationtotheRTS.OneachAMPdecisioncycle,selectandexecutehighest-prioritytask.Newcapability:deliberationscheduling.Estimatecosts/benefitsofdifferenttasks:tieprioritytoutility.NegotiatedAllocationofMissionGoalsAdaptiveMissionPlannersnegotiatetodistribute:Long-termmissiongoals.Roles:predefineresponsibilities/concernsascontextfornegotiation.Performanceevaluationresponsibilities.EnhancedContract-Netstylenegotiation.Adaptivity/dynamics.AMPDeliberationSchedulingMissionphasescharacterizedby:Probabilityofsurvival/failure.Expectedreward. Expectedstarttimeandduration.Agentkeepsrewardfromallexecutedphases.DifferentCSMproblemconfigurationoperatorsyielddifferenttypesofplanimprovements.Improveprobabilityofsurvival.Improveexpectedreward(numberorlikelihoodofgoals).Configurationoperatorscanbeappliedtosamephaseindifferentways(viaparameters).Configurationoperatorshavedifferentexpectedresourcerequirements(computationtime/space).ExtensibleCIRCAArchitectureWell-definedAPIforeachCIRCAmoduleandcomponentswithinmodules.Eg:CSM:problemspecification,algorithmcontrolsin,reactiveplansandplanningprocessmonitoringout.Well-definedAPIforcomponentswithinmodules.Eg:APIforstate-spaceplannerinteractionwithverifier:Statespacemodelintoverifier.Safetyassessmentplusoptionalculpritstatetraceoutfromverifier.Hasallowedustoplugindifferentplannersandverifiersfordifferentdomainrepresentationsandverifierapproaches:Timedautomata:Kronos,RTA,CSV,RTA-incremental,CSV-incremental;DAP,pDAP,regularplanners.Safety-orientedGeneralizedsemi-Markov:MonteCarlosampler.Maximizingexpectedutility:MCsampler;evolutionaryreaction-spacesearchengine.Differentexecutives:RTS,CLIPS.MemoryandModelsinCIRCAAdaptiveMissionPlannerControllerSynthesisModuleRealTimeSystemMissionmodel:phaseswiththreats&goals.Mappingsfromthreats/goalstopartialCSMinputmodels(setsoftransitions).CSMperformanceprofiles.TransitionmodelsfromAMP.TimingmodelofRTS.CachedTAPcontrollers.Currentlysensedstatefeatures.ProbabilisticReactivePlanningAddtransitionprobabilitiestostatemodel.Worldtransitionsandcontrolledactions.Samplesimulatedexecutionsofthecurrentplantoestimateprobabilityofreachingdifferentstates.Buildplansthathandlemost-probablestates.AllowsCIRCAtotradeoffplanningtimeandplancomplexityagainstsystemsafety.AllowsCIRCAtooptimizeexpectedutilityofplans,tradingoffsafetyagainstmissionobjectives(goals,rewardmodel).ProbabilisticWorldModelDynamicsTheworldmodelisageneralizedsemi-Markovprocess(GSMP).Theworldoccupiesasinglestateatanypointintime.Enabledtransitionsinthecurrentstatecompetetotrigger.Onetransitiontriggersineachstate,determiningthenextstate.Non-Markovianbecausetriggerdistributionsdependonholdingtimes.TherearenoanalyticsolutionsforunrestrictedGSMPs.Mustuseasampling-basedapproachtoestimatestateprobabilities.Simpler:estimatewhetherfailureistoolikely.AcceptanceSamplingLetpFbethefailureprobabilityofaplan.Wanttospecifyfailurethresholdqsuchthat:PlanisacceptedifpF
£
q.PlanisrejectedifpF
>
q.Useacceptancesamplingtodecidewhethertoacceptaplan.Exhaustivesamplingisimpossible,sowemustexpecterrors:TypeIerror:rejectacceptableplan.TypeIIerror:acceptrejectableplan.Wanttoboundprobabilityoferror.SequentialSamplingSinglesamplingplanalwaysrequiresfixednumberofsamples.Sequentialsamplingplandecideswhethertogeneratemoresamplesbasedonsamplesseensofar.Defineacceptancenumberanandrejectionnumberrnatstagen.AcceptplanifobservedfailuresareatmostanRejectplanifobservedfailuresareatleastrnIntuitivesequentialsampling:Ifyou’vealreadyseencfailuresatanyiteration,thenreject(rn=c).Ifyoucannotpossiblyseecfailuresinremainingiterations,thenaccept(an=c+i-n-1).NumberofSamplesRequiredWaldacceptancesamplingrequiressignificantlyfewersamples.ActualfailureprobabilityStaticsamplingplanWaldsequentialsamplingplanthresholdPerformanceExpectednumberofrequiredsamplesonlydependsonfailureprobabilityandthreshold,notstatespacesize!Domain-dependentfactorsaffectingtimetogenerateeachsample:Timeperiodconsidered(tmax).MeanvaluesofthedistributionfunctionsF.Inpractice,thisallowsustogenerateprobabilistically-verifiedplansforverylargedomainsthatcannotbehandledbycomplete(non-probabilistic)model-checkingapproaches.OptimizingPlansinGSMPsAddingprobabilisticdelaydistributionstotimedautomatayieldsGeneralizedSemi-MarkovProcessmodel:Efficientforrepresentingrealworld.Noanalyticsolutionsavailable.Addingrewardmodelgivesopportunityfordecision-theoreticsolutioncriterion:maximizeexpectedutility.Approach:generateplansandassessEUdominanceusingMonteCarlosamplingofGSMPexecutions.Backjumpbasedonsampletraces.Newideas:localsearch;evolutionarysearchinreactionspace.LearninginCIRCA:NotAboutSpeedupUniquerequirementsonlearningformission-
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 港口與航道工程技術(shù)專業(yè)教學(xué)標(biāo)準(zhǔn)(高等職業(yè)教育專科)2025修訂
- 現(xiàn)代移動通信技術(shù)專業(yè)教學(xué)標(biāo)準(zhǔn)(高等職業(yè)教育專科)2025修訂
- 2025年中國顆粒酶行業(yè)市場全景分析及前景機(jī)遇研判報(bào)告
- 2025年中國靜電釋放安全鞋行業(yè)市場全景分析及前景機(jī)遇研判報(bào)告
- 2025年中國罐頭包裝市場運(yùn)營趨勢分析及投資潛力研究報(bào)告
- 中國橡塑密封件行業(yè)市場調(diào)查研究及投資戰(zhàn)略咨詢報(bào)告
- 2025年中國車載通信系統(tǒng)行業(yè)市場運(yùn)行現(xiàn)狀及未來發(fā)展預(yù)測報(bào)告
- 2025年中國剛性雙面板行業(yè)市場發(fā)展現(xiàn)狀及投資戰(zhàn)略咨詢報(bào)告
- 2025年 保育師理論知識模擬考試題附答案
- 中國豪華客車行業(yè)市場深度評估及投資策略咨詢報(bào)告
- 青年興則國家興青年強(qiáng)則國家強(qiáng)
- 全國行業(yè)職業(yè)技能競賽(電力交易員)考試題庫及答案
- DB50-T 1293-2022 松材線蟲病疫木除治技術(shù)規(guī)范
- 山東省青島市英語中考試題及解答參考(2025年)
- 多功能熱洗車熱洗清蠟QHSE作業(yè)指導(dǎo)書及操作規(guī)程
- 2024年北京中考地理試卷
- 《市政養(yǎng)護(hù)工程施工方案》
- 液化石油氣站規(guī)章制度2024
- (安全生產(chǎn))煤礦安全生產(chǎn)監(jiān)管檢查清單
- 廣東省佛山市南海區(qū)2023-2024學(xué)年七年級下學(xué)期期末生物學(xué)試題(解析版)
- 無菌技術(shù)操作評分標(biāo)準(zhǔn)
評論
0/150
提交評論