




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.圓心坐標為,半徑長為2的圓的標準方程是()A. B.C. D.2.若三個實數(shù)a,b,c成等比數(shù)列,其中a=3-5,c=3+A.2 B.-2 C.±2 D.43.在中,,,分別是角,,的對邊,且滿足,那么的形狀一定是()A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形4.如圖,這是某校高一年級一名學生七次月考數(shù)學成績(滿分100分)的莖葉圖去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別是()A.87,9.6 B.85,9.6 C.87,5,6 D.85,5.65.已知函數(shù),若存在,且,使成立,則以下對實數(shù)的推述正確的是()A. B. C. D.6.某高校進行自主招生,先從報名者中篩選出400人參加筆試,再按筆試成績擇優(yōu)選出100人參加面試.現(xiàn)隨機抽取了24名筆試者的成績,統(tǒng)計結果如下表所示.分數(shù)段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人數(shù)234951據(jù)此估計允許參加面試的分數(shù)線大約是()A.90 B.85C.80 D.757.根據(jù)如下樣本數(shù)據(jù)x
3
4
5
6
7
8
y
可得到的回歸方程為,則()A. B. C. D.8.若{an}是等差數(shù)列,且a1+a4+a7=45,a2+a5+a8=39,則a3+a6+a9=()A.39 B.20 C.19.5 D.339.在等差數(shù)列an中,若a2+A.100 B.90 C.95 D.2010.已知兩條不重合的直線和,兩個不重合的平面和,下列四個說法:①若,,,則;②若,,則;③若,,,,則;④若,,,,則.其中所有正確的序號為()A.②④ B.③④ C.④ D.①③二、填空題:本大題共6小題,每小題5分,共30分。11.在空間直角坐標系中,點關于原點的對稱點的坐標為__________.12.若在區(qū)間(且)上至少含有30個零點,則的最小值為_____.13.設,為單位向量,其中,,且在方向上的射影數(shù)量為2,則與的夾角是___.14.若兩個正實數(shù)滿足,且不等式有解,則實數(shù)的取值范圍是____________.15.設為三條不同的直線,為兩個不同的平面,給出下列四個判斷:①若則;②若是在內(nèi)的射影,,則;③底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;④若球的表面積擴大為原來的16倍,則球的體積擴大為原來的32倍;其中正確的為___________.16.若函數(shù)圖象各點的橫坐標縮短為原來的一半,再向左平移個單位,得到的函數(shù)圖象離原點最近的的對稱中心是______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知直線l1:ax﹣y﹣2=0與直線l2:(3﹣2a)x+y﹣1=0(a∈R).(1)若l1與l2互相垂直,求a的值:(2)若l1與l2相交且交點在第三象限,求a的取值范圍.18.已知圓,圓與圓關于直線對稱.(1)求圓的方程;(2)過直線上的點分別作斜率為的兩條直線,使得被圓截得的弦長與被圓截得的弦長相等.(i)求的坐標;(ⅱ)過任作兩條互相垂直的直線分別與兩圓相交,判斷所得弦長是否恒相等,并說明理由.19.已知向量滿足,且向量與的夾角為.(1)求的值;(2)求.20.已知函數(shù)的定義域為R(1)求的取值范圍;(2)若函數(shù)的最小值為,解關于的不等式。21.設O為坐標原點,動點M在橢圓C上,過M作x軸的垂線,垂足為N,點P滿足.(1)求點P的軌跡方程;(2)設點在直線上,且.證明:過點P且垂直于OQ的直線過C的左焦點F.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)圓的標準方程的形式寫.【詳解】圓心為,半徑為2的圓的標準方程是.故選C.【點睛】本題考查了圓的標準方程,故選C.2、C【解析】
由實數(shù)a,b,c成等比數(shù)列,得b2【詳解】由實數(shù)a,b,c成等比數(shù)列,得b2所以b=±2.故選C.【點睛】本題主要考查了等比數(shù)列的基本性質(zhì),屬于基礎題.3、C【解析】
由正弦定理,可得,.,或,或,即或,即三角形為等腰三角形或直角三角形,故選C.考點:1正弦定理;2正弦的二倍角公式.4、D【解析】
去掉一個最高分和一個最低分后,所剩數(shù)據(jù)為82,84,84,86,89,由此能求出所剩數(shù)據(jù)的平均數(shù)和方差.【詳解】平均數(shù),方差,選D.【點睛】本題考查所剩數(shù)據(jù)的平均數(shù)和方差的求法,考查莖葉圖、平均數(shù)、方差的性質(zhì)等基礎知識,考查運算求解能力,是基礎題.5、A【解析】
先根據(jù)的圖象性質(zhì),推得函數(shù)的單調(diào)區(qū)間,再依據(jù)條件分析求解.【詳解】解:是把的圖象中軸下方的部分對稱到軸上方,函數(shù)在上遞減;在上遞增.函數(shù)的圖象可由的圖象向右平移1個單位而得,在,上遞減,在,上遞增,若存在,,,,使成立,故選:.【點睛】本題考查單調(diào)函數(shù)的性質(zhì)、反正切函數(shù)的圖象性質(zhì)及函數(shù)的圖象的平移.圖象可由的圖象向左、向右平移個單位得到,屬于基礎題.6、C【解析】
根據(jù)題意可從樣本中數(shù)據(jù)的頻率考慮,即按成績擇優(yōu)選擇頻率為的,根據(jù)題意得到所選的范圍后再求出對應的分數(shù).【詳解】由題意得,參加面試的頻率為,結合表中的數(shù)據(jù)可得,樣本中[80,90]的頻率為,由樣本估計總體知,分數(shù)線大約為80分.故選C.【點睛】本題考查統(tǒng)計圖表的應用,解題的關鍵是理解題意,同時還要正確掌握統(tǒng)計中的常用公式,屬于基礎題.7、A【解析】試題分析:依據(jù)樣本數(shù)據(jù)描點連線可知圖像為遞減且在軸上的截距大于0,所以.考點:1.散點圖;2.線性回歸方程;8、D【解析】
根據(jù)等差數(shù)列的通項公式,縱向觀察三個式子的項的腳標關系,可巧解.【詳解】由等差數(shù)列得:所以同理:故選D.【點睛】本題考查等差數(shù)列通項公式,關鍵縱向觀察出腳標的特殊關系更妙,屬于中檔題.9、B【解析】
利用等差數(shù)列的性質(zhì),即下標和相等對應項的和相等,得到a2【詳解】∵數(shù)列an為等差數(shù)列,a∴a【點睛】考查等差數(shù)列的性質(zhì)、等差中項,考查基本量法求數(shù)列問題.10、C【解析】
根據(jù)線面平行,面面平行,線面垂直,面面垂直的性質(zhì)定理,判定定理等有關結論,逐項判斷出各項的真假,即可求出.【詳解】對①,若,,,則或和相交,所以①錯誤;對②,若,,則或,所以②錯誤;對③,根據(jù)面面平行的判定定理可知,只有,,,,且和相交,則,所以③錯誤;對④,根據(jù)面面垂直的性質(zhì)定理可知,④正確.故選:C.【點睛】本題主要考查有關線面平行,面面平行,線面垂直,面面垂直的命題的判斷,意在考查線面平行,面面平行,線面垂直,面面垂直的性質(zhì)定理,判定定理等有關結論的理解和應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
空間直角坐標系中,關于原點對稱,每個坐標變?yōu)樵瓉淼南喾磾?shù).【詳解】空間直角坐標系中,關于原點對稱,每個坐標變?yōu)樵瓉淼南喾磾?shù).點關于原點的對稱點的坐標為故答案為:【點睛】本題考查了空間直角坐標系關于原點對稱,屬于簡單題.12、【解析】
首先求出在上的兩個零點,再根據(jù)周期性算出至少含有30個零點時的值即可【詳解】根據(jù),即,故,或,∵在區(qū)間(且)上至少含有30個零點,∴不妨假設(此時,),則此時的最小值為,(此時,),∴的最小值為,故答案為:【點睛】本題函數(shù)零點個數(shù)的判斷,解決此類問題通常結合周期、函數(shù)圖形進行解決。屬于難題。13、【解析】
利用在方向上的射影數(shù)量為2可得:,即可整理得:,問題得解.【詳解】因為在方向上的射影數(shù)量為2,所以,整理得:又,為單位向量,所以.設與的夾角,則所以與的夾角是【點睛】本題主要考查了向量射影的概念及方程思想,還考查了平面向量夾角公式應用,考查轉(zhuǎn)化能力及計算能力,屬于中檔題.14、【解析】試題分析:因為不等式有解,所以,因為,且,所以,當且僅當,即時,等號是成立的,所以,所以,即,解得或.考點:不等式的有解問題和基本不等式的求最值.【方法點晴】本題主要考查了基本不等式在最值中的應用,不等式的有解問題,在應用基本不等式求解最值時,呀注意“一正、二定、三相等”的判斷,運用基本不等式解題的關鍵是尋找和為定值或是積為定值,難點在于如何合理正確的構造出定值,對于不等式的有解問題一般選用參數(shù)分離法,轉(zhuǎn)化為函數(shù)的最值或借助數(shù)形結合法求解,屬于中檔試題.15、①②【解析】
對四個命題分別進行判斷即可得到結論【詳解】①若,垂足為,與確定平面,,則,,則,,則,故,故正確②若,是在內(nèi)的射影,,根據(jù)三垂線定理,可得,故正確③底面是等邊三角形,側(cè)面都是有公共頂點的等腰三角形的三棱錐是正三棱錐,故不正確④若球的表面積擴大為原來的倍,則半徑擴大為原來的倍,則球的體積擴大為原來的倍,故不正確其中正確的為①②【點睛】本題主要考查了空間中直線與平面之間的位置關系、球的體積等知識點,數(shù)量掌握各知識點然后對其進行判斷,較為基礎。16、【解析】
由二倍角公式化簡函數(shù)式,然后由三角函數(shù)圖象變換得新解析式,結合正弦函數(shù)性質(zhì)得對稱中心.【詳解】由題意,經(jīng)過圖象變換后新函數(shù)解析式為,由,,,絕對值最小的是,因此所求對稱中心為.故答案為:.【點睛】本題考查三角函數(shù)的圖象變換,考查正弦函數(shù)的性質(zhì),考查二倍角公式,掌握正弦函數(shù)性質(zhì)是解題關鍵.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)a,或a=1(2)a>3【解析】
(1)由題意利用兩條直線互相垂直的性質(zhì),求得的值;(2)聯(lián)立方程組求出兩條直線的交點坐標,再根據(jù)交點在第三象限,求出的取值范圍.【詳解】(1)∵直線l1:ax﹣y﹣2=0與直線l2:(3﹣2a)x+y﹣1=0,l1與l2互相垂直,∴a?(3﹣2a)+(﹣1)?1=0,求得a,或a=1.(2)若l1與l2相交且交點在第三象限,聯(lián)立方程組,∵l1與l2相交,故a≠3,求得方程組的解為,∴,求得a>3.【點睛】本題主要考查兩條直線互相垂直的性質(zhì),求兩條直線的交點坐標,屬于基礎題.18、(1);(2)(i),(ii)見解析【解析】
(1)根據(jù)題意,將問題轉(zhuǎn)化為關于直線的對稱點即可得到,半徑不變,從而得到方程;(2)(i)設,由于弦長和距離都相等,故P到兩直線的距離也相等,利用點到線距離公式即可得到答案;(ⅱ)分別討論斜率不存在和為0三種情況分別計算對應弦長,故可判斷.【詳解】(1)設,因為圓與圓關于直線對稱,,則直線與直線垂直,中點在直線上,得解得所以圓.(2)(i)設的方程為,即;的方程為,即.因為被圓截得的弦長與被圓截得的弦長相等,且兩圓半徑相等,所以到的距離與到的距離相等,即,所以或.由題意,到直線的距離,所以不滿足題意,舍去,故,點坐標為.(ii)過點任作互相垂直的兩條直線分別與兩圓相交,所得弦長恒相等.證明如下:當?shù)男甭实扔?時,的斜率不存在,被圓截得的弦長與被圓截得的弦長都等于圓的半徑;當?shù)男甭什淮嬖冢男甭实扔?時,與圓不相交,與圓不相交.當、的斜率存在且都不等于0,兩條直線分別與兩圓相交時,設、的方程分別為,即.因為到的距離,到的距離,所以到的距離與到的距離相等.所以圓與圓的半徑相等,所以被圓截得的弦長與被圓截得的弦長恒相等.綜上所述,過點任作互相垂直的兩條直線分別與兩圓相交,所得弦長恒相等.【點睛】本題主要考查點的對稱問題,直線與圓的位置關系,計算量較大,意在考查學生的轉(zhuǎn)化能力,計算能力,難度中等.19、(1)(2)【解析】
(1)根據(jù),得到,再由題中數(shù)據(jù),即可求出結果;(2)根據(jù)向量數(shù)量積的運算法則,以及(1)的結果,即可得出結果.【詳解】解:(1)因為,所以,即.因為,且向量與的夾角為,所以,即.(2)由(1)可得.【點睛】本題主要考查平面向量的數(shù)量積,熟記模的計算公式,以及向量數(shù)量積的運算法則即可,屬于常考題型.20、(1);(2)【解析】
(1)由的定義域為可知,,恒成立,即可求出的范圍.(2)結合的范圍,運用配方法,即可求出的值,進而求解不等式.【詳解】(1)由已知可得對,恒成立,當時,恒成立。當時,則有,解得,綜上可知,的取值范圍是[0,1](2)由(1)可知的取值范圍是[0,1]顯然,當時,,不符合.所以,,,由題意得,,,可化為,解得,不等式的解集為。【點睛】主要考查了一元二次不等式在上恒成立求參數(shù)范圍,配方法以及一元二次不等式求解問題,屬于中檔題.對任意實數(shù)恒成立的條件是;而任意實數(shù)恒成立的條件是.21、(1);(2)見解析.【解析】
試題分析:(1)轉(zhuǎn)移法求軌跡:設所求動點坐標及相應已知動點坐標,利用條件列兩種坐標關系,最后代入已知動點軌跡方程,化簡可得所求軌跡方程;(2)證明直線過定點問題,一般方法是以算代證:即證,先設P(m,n),則需證,即根據(jù)條件可得,而,代入即得.試題解析:解:(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司班組戶外活動方案
- 公司立flag活動方案
- 公司清明工會活動方案
- 公司活動中心策劃方案
- 公司猜盲盒活動方案
- 公司組織跑步活動方案
- 公司新年服裝定制活動方案
- 公司服裝大賽活動方案
- 公司組內(nèi)活動策劃方案
- 2025年運動醫(yī)學與運動訓練課程考試試題及答案
- 【英語(新高考Ⅰ卷)】2025年普通高等學校招生全國統(tǒng)一考試
- 2025年天津市河西區(qū)中考二模數(shù)學試題(含部分答案)
- 醫(yī)院培訓課件:《藥品不良反應報告和監(jiān)測工作簡介》
- 廣東省東莞市2025屆九年級下學期中考三模語文試卷(含答案)
- 2025 屆九年級初三畢業(yè)典禮校長講話:星河長明共赴新程
- 2025年生態(tài)文明建設的考核試卷及答案
- GM/T 0009-2023SM2密碼算法使用規(guī)范
- 高效能人士七個習慣之一積極主動
- 社區(qū)衛(wèi)生服務站建設與運營管理
- 2025年河北省中考乾坤押題卷物理試卷B及答案
- 國家開放大學《藥物治療學(本)》形考作業(yè)1-4參考答案
評論
0/150
提交評論