




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.三角形的兩邊長分別為3和6,第三邊的長是方程x2﹣6x+8=0的一個根,則這個三角形的周長是()A.9 B.11 C.13 D.11或132.民族圖案是數學文化中的一塊瑰寶.下列圖案中,既不是中心對稱圖形也不是軸對稱圖形的是()
A. B. C. D.3.已知:a、b是不等于0的實數,2a=3b,那么下列等式中正確的是()A.ab=23 B.a4.為喜迎黨的十九大召開,樂陵某中學剪紙社團進行了剪紙大賽,下列作品既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.5.計算(x-l)(x-2)的結果為()A.x2+2 B.x2-3x+2 C.x2-3x-3 D.x2-2x+26.如圖,BD為⊙O的直徑,點A為弧BDC的中點,∠ABD=35°,則∠DBC=()A.20° B.35° C.15° D.45°7.矩形具有而平行四邊形不具有的性質是()A.對角相等 B.對角線互相平分C.對角線相等 D.對邊相等8.如圖圖形中,是中心對稱圖形的是()A. B. C. D.9.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.10.在下列四個新能源汽車車標的設計圖中,屬于中心對稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知點P(a,b)在反比例函數y=的圖象上,則ab=_____.12.在△ABC中,∠C=30°,∠A﹣∠B=30°,則∠A=_____.13.在實數范圍內分解因式:x2y﹣2y=_____.14.若一個圓錐的側面展開圖是一個半徑為6cm,圓心角為120°的扇形,則該圓錐的側面面積為______cm(結果保留π).15.如圖,AB=AC,AD∥BC,若∠BAC=80°,則∠DAC=__________.16.已知x1,x2是方程x2-3x-1=0的兩根,則=______.17.觀光塔是濰坊市區的標志性建筑.為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°,已知樓房高AB約是45m,根據以上觀測數據可求觀光塔的高CD是______m.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知在中,,是的平分線.(1)作一個使它經過兩點,且圓心在邊上;(不寫作法,保留作圖痕跡)(2)判斷直線與的位置關系,并說明理由.19.(5分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=∠BAC=60°,于是==遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.(1)求證:△ADB≌△AEC;(2)若AD=2,BD=3,請計算線段CD的長;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內作射線BM,作點C關于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.(3)證明:△CEF是等邊三角形;(4)若AE=4,CE=1,求BF的長.20.(8分)每年的6月5日為世界環保日,為了提倡低碳環保,某公司決定購買10臺節省能源的新設備,現有甲、乙兩種型號的設備可供選購,經調查:購買了3臺甲型設備比購買2臺乙型設備多花了16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元.求甲、乙兩種型號設備的價格;該公司經預算決定購買節省能源的新設備的資金不超過110萬元,你認為該公司有幾種購買方案;在(2)的條件下,已知甲型設備的產量為240噸/月,乙型設備的產量為180噸/月,若每月要求總產量不低于2040噸,為了節約資金,請你為該公司設計一種最省錢的購買方案.21.(10分)2013年6月,某中學結合廣西中小學閱讀素養評估活動,以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調查,收集整理數據后,繪制出以下兩幅未完成的統計圖,請根據圖1和圖2提供的信息,解答下列問題:在這次抽樣調查中,一共調查了多少名學生?請把折線統計圖(圖1)補充完整;求出扇形統計圖(圖2)中,體育部分所對應的圓心角的度數;如果這所中學共有學生1800名,那么請你估計最喜愛科普類書籍的學生人數.22.(10分)學校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現狀,對該班部分學生進行調查,把調查結果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調查結果繪制成兩幅不完整的統計圖(如圖1,2).請根據統計圖解答下列問題:本次調查中,王老師一共調查了名學生;將條形統計圖補充完整;為了共同進步,王老師從被調查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.23.(12分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結CP,將線段CP繞點C順時針旋轉60°得到線段CQ,連結QB并延長交直線AD于點E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數,選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.24.(14分)如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過點A的直線CD⊥MN于點D,連接BD.(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數量關系.經過觀察思考,小明出一種思路:如圖1,過點B作BE⊥BD,交MN于點E,進而得出:DC+AD=BD.(2)探究證明將直線MN繞點A順時針旋轉到圖2的位置寫出此時線段DC,AD,BD之間的數量關系,并證明(3)拓展延伸在直線MN繞點A旋轉的過程中,當△ABD面積取得最大值時,若CD長為1,請直接寫BD的長.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】試題分析:先求出方程x2-6x+8=0的解,再根據三角形的三邊關系求解即可.解方程x2-6x+8=0得x=2或x=4當x=2時,三邊長為2、3、6,而2+3<6,此時無法構成三角形當x=4時,三邊長為4、3、6,此時可以構成三角形,周長=4+3+6=13故選C.考點:解一元二次方程,三角形的三邊關系點評:解題的關鍵是熟記三角形的三邊關系:任兩邊之和大于第三邊,任兩邊之差小于第三邊.2、C【解析】分析:根據軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合.因此,A、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,也不是中心對稱圖形,故本選項正確;D、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤.故選C.3、B【解析】∵2a=3b,∴ab=3故選B.4、C【解析】
根據軸對稱和中心對稱的定義去判斷即可得出正確答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形,故此選項正確;D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:C.【點睛】本題考查的是軸對稱和中心對稱的知識點,解題關鍵在于對知識點的理解和把握.5、B【解析】
根據多項式的乘法法則計算即可.【詳解】(x-l)(x-2)=x2-2x-x+2=x2-3x+2.故選B.【點睛】本題考查了多項式與多項式的乘法運算,多項式與多項式相乘,先用一個多項式的每一項分別乘另一個多項式的每一項,再把所得的積相加.6、A【解析】
根據∠ABD=35°就可以求出的度數,再根據,可以求出,因此就可以求得的度數,從而求得∠DBC【詳解】解:∵∠ABD=35°,∴的度數都是70°,∵BD為直徑,∴的度數是180°﹣70°=110°,∵點A為弧BDC的中點,∴的度數也是110°,∴的度數是110°+110°﹣180°=40°,∴∠DBC==20°,故選:A.【點睛】本題考查了等腰三角形性質、圓周角定理,主要考查學生的推理能力.7、C【解析】試題分析:舉出矩形和平行四邊形的所有性質,找出矩形具有而平行四邊形不具有的性質即可.解:矩形的性質有:①矩形的對邊相等且平行,②矩形的對角相等,且都是直角,③矩形的對角線互相平分、相等;平行四邊形的性質有:①平行四邊形的對邊分別相等且平行,②平行四邊形的對角分別相等,③平行四邊形的對角線互相平分;∴矩形具有而平行四邊形不一定具有的性質是對角線相等,故選C.8、D【解析】
根據中心對稱圖形的概念和識別.【詳解】根據中心對稱圖形的概念和識別,可知D是中心對稱圖形,A、C是軸對稱圖形,D既不是中心對稱圖形,也不是軸對稱圖形.故選D.【點睛】本題考查中心對稱圖形,掌握中心對稱圖形的概念,會判斷一個圖形是否是中心對稱圖形.9、C【解析】
結合圖形,逐項進行分析即可.【詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【點睛】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關鍵.10、D【解析】
根據中心對稱圖形的概念求解.【詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【點睛】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】【分析】接把點P(a,b)代入反比例函數y=即可得出結論.【詳解】∵點P(a,b)在反比例函數y=的圖象上,∴b=,∴ab=2,故答案為:2.【點睛】本題考查的是反比例函數圖象上點的坐標特點,熟知反比例函數圖象上各點的坐標一定適合此函數的解析式是解答此題的關鍵.12、90°.【解析】
根據三角形內角和得到∠A+∠B+∠C=180°,而∠C=30°,則可計算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把兩式相加消去∠B即可求得∠A的度數.【詳解】解:∵∠A+∠B+∠C=180°,∠C=30°,∴∠A+∠B+=150°,∵∠A﹣∠B=30°,∴2∠A=180°,∴∠A=90°.故答案為:90°.【點睛】本題考查了三角形內角和定理:三角形內角和是180°.主要用在求三角形中角的度數.①直接根據兩已知角求第三個角;②依據三角形中角的關系,用代數方法求三個角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.13、y(x+)(x﹣)【解析】
先提取公因式y后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續分解.【詳解】x2y-2y=y(x2-2)=y(x+)(x-).故答案為y(x+)(x-).【點睛】本題考查實數范圍內的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數范圍內進行因式分解的式子的結果一般要分到出現無理數為止.14、12π【解析】根據圓錐的側面展開圖是扇形可得,,∴該圓錐的側面面積為:12π,故答案為12π.15、50°【解析】
根據等腰三角形頂角度數,可求出每個底角,然后根據兩直線平行,內錯角相等解答.【詳解】解:∵AB=AC,∠BAC=80°,∴∠B=∠C=(180°﹣80°)÷2=50°;∵AD∥BC,∴∠DAC=∠C=50°,故答案為50°.【點睛】本題考查了等腰三角形的性質以及平行線性質的應用,注意:兩直線平行,內錯角相等.16、﹣1.【解析】試題解析:∵,是方程的兩根,∴、,∴===﹣1.故答案為﹣1.17、135【解析】試題分析:根據題意可得:∠BDA=30°,∠DAC=60°,在Rt△ABD中,因為AB=45m,所以AD=m,所以在Rt△ACD中,CD=AD=×=135m.考點:解直角三角形的應用.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)與相切,理由見解析.【解析】
(1)作出AD的垂直平分線,交AB于點O,進而利用AO為半徑求出即可;
(2)利用半徑相等結合角平分線的性質得出OD∥AC,進而求出OD⊥BC,進而得出答案.【詳解】(1)①分別以為圓心,大于的長為半徑作弧,兩弧相交于點和,②作直線,與相交于點,③以為圓心,為半徑作圓,如圖即為所作;(2)與相切,理由如下:連接OD,為半徑,,是等腰三角形,,平分,,,,,,,為半徑,與相切.【點睛】本題主要考查了切線的判定以及線段垂直平分線的作法與性質等知識,掌握切線的判定方法是解題關鍵.19、(1)見解析;(2)CD=;(3)見解析;(4)【解析】試題分析:遷移應用:(1)如圖2中,只要證明∠DAB=∠CAE,即可根據SAS解決問題;
(2)結論:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD?cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解決問題;
拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四點共圓,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等邊三角形;
(4)由AE=4,EC=EF=1,推出AH=HE=2,FH=3,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解決問題.試題解析:遷移應用:(1)證明:如圖2,
∵∠BAC=∠DAE=120°,
∴∠DAB=∠CAE,
在△DAE和△EAC中,
DA=EA,∠DAB=∠EAC,AB=AC,
∴△DAB≌△EAC,
(2)結論:CD=AD+BD.
理由:如圖2-1中,作AH⊥CD于H.
∵△DAB≌△EAC,
∴BD=CE,
在Rt△ADH中,DH=AD?cos30°=AD,
∵AD=AE,AH⊥DE,
∴DH=HE,
∵CD=DE+EC=2DH+BD=AD+BD=.
拓展延伸:(3)如圖3中,作BH⊥AE于H,連接BE.
∵四邊形ABCD是菱形,∠ABC=120°,
∴△ABD,△BDC是等邊三角形,
∴BA=BD=BC,
∵E、C關于BM對稱,
∴BC=BE=BD=BA,FE=FC,
∴A、D、E、C四點共圓,
∴∠ADC=∠AEC=120°,
∴∠FEC=60°,
∴△EFC是等邊三角形,
(4)∵AE=4,EC=EF=1,
∴AH=HE=2,FH=3,
在Rt△BHF中,∵∠BFH=30°,
∴=cos30°,
∴BF=.20、(1)甲,乙兩種型號設備每臺的價格分別為12萬元和10萬元.(2)有6種購買方案.(3)最省錢的購買方案為,選購甲型設備4臺,乙型設備6臺.【解析】
(1)設甲、乙兩種型號設備每臺的價格分別為萬元和萬元,根據購買了3臺甲型設備比購買2臺乙型設備多花了16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元可列出方程組,解之即可;(2)設購買甲型設備臺,乙型設備臺,根據購買節省能源的新設備的資金不超過110萬元列不等式,解之確定m的值,即可確定方案;(3)因為公司要求每月的產量不低于2040噸,據此可得關于m的不等式,解之即可由m的值確定方案,然后進行比較,做出選擇即可.【詳解】(1)設甲、乙兩種型號設備每臺的價格分別為萬元和萬元,由題意得:,解得:,則甲,乙兩種型號設備每臺的價格分別為12萬元和10萬元;(2)設購買甲型設備臺,乙型設備臺,則,∴,∵取非負整數,∴,∴有6種購買方案;(3)由題意:,∴,∴為4或5,當時,購買資金為:(萬元),當時,購買資金為:(萬元),則最省錢的購買方案是選購甲型設備4臺,乙型設備6臺.【點睛】本題考查了二元一次方程組的應用,一元一次不等式的應用,弄清題意,找準等量關系、不等關系列出方程組與不等式是解題的關鍵.21、(1)一共調查了300名學生.(2)(3)體育部分所對應的圓心角的度數為48°.(4)1800名學生中估計最喜愛科普類書籍的學生人數為1.【解析】
(1)用文學的人數除以所占的百分比計算即可得解.(2)根據所占的百分比求出藝術和其它的人數,然后補全折線圖即可.(3)用體育所占的百分比乘以360°,計算即可得解.(4)用總人數乘以科普所占的百分比,計算即可得解.【詳解】解:(1)∵90÷30%=300(名),∴一共調查了300名學生.(2)藝術的人數:300×20%=60名,其它的人數:300×10%=30名.補全折線圖如下:(3)體育部分所對應的圓心角的度數為:×360°=48°.(4)∵1800×=1(名),∴1800名學生中估計最喜愛科普類書籍的學生人數為1.22、(1)20;(2)作圖見試題解析;(3).【解析】
(1)由A類的學生數以及所占的百分比即可求得答案;(2)先求出C類的女生數、D類的男生數,繼而可補全條形統計圖;(3)首先根據題意列出表格,再利用表格求得所有等可能的結果與恰好選中一名男生和一名女生的情況,繼而求得答案.【詳解】(1)根據題意得:王老師一共調查學生:(2+1)÷15%=20(名);故答案為20;(2)∵C類女生:20×25%﹣2=3(名);D類男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如圖:(3)列表如下:A類中的兩名男生分別記為A1和A2,男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6種等可能的結果,其中,一男一女的有3種,所以所選兩位同學恰好是一位男生和一位女生的概率為:.23、(1)∠QEP=60°;(2)∠QEP=60°,證明詳見解析;(3)【解析】
(1)如圖1,先根據旋轉的性質和等邊三角形的性質得出∠PCA=∠QCB,進而可利用SAS證明△CQB≌△CPA,進而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的內角和定理即可求得∠QEP=∠QCP,從而完成猜想;(2)以∠DAC是銳角為例,如圖2,仿(1)的證明思路利用SAS證明△ACP≌△BCQ,可得∠APC=∠Q,進一步即可證得結論;(3)仿(2)可證明△ACP≌△BCQ,于是AP=BQ,再求出AP的長即可,作CH⊥AD于H,如圖3,易證∠APC=30°,△ACH為等腰直角三角形,由AC=4可求得CH、PH的長,于是AP可得,問題即得解決.【詳解】解:(1)∠QEP=60°;證明:連接PQ,如圖1,由題意得:PC=CQ,且∠PCQ=60°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠PCA=∠QCB,則在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因為△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案為60;(2)∠QEP=60°.以∠DAC是銳角為例.證明:如圖2,∵△ABC是等邊三角形,∴AC=BC,∠ACB=60°,∵線段CP繞點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 呼吸訓練與有效咳嗽排痰技術要點
- 休克病人院前急救
- 2025年度安監站工作總結
- 2024中國兒童青少年數智素養測評報告
- 深度解析2025年新能源汽車制造關鍵材料產業布局報告
- 2025年職業培訓學校招生宣傳策略與效果評估報告
- 大數據驅動下的2025年成人繼續教育線上學習模式研究報告
- 農業產業化龍頭企業農業保險與風險防范報告
- 智慧物流技術與實務 課件全套 項目1-6 智慧物流概述-智慧物流的綜合應用
- 2025年藥品原輔料供應鏈穩定性及風險應對策略研究報告:市場前景
- 四川省內江市市中區2025年小數畢業模擬試卷(含答案)
- 《中國傳統節慶文化》課件
- 公路養護基礎知識
- 急診突發事件應急預案和處理流程
- 3-6歲兒童學習與發展指南-語言
- 醫學知識 避雷器帶電檢測方法與異常診斷 學習課件
- 養老護理員知識培訓課件
- 2025-2030中國袋式除塵器市場需求前景與發展動向追蹤研究報告
- 學校傳染病防控培養課件
- GB/T 19598-2025地理標志產品質量要求安溪鐵觀音
- 施工現場安全防護標準化圖集
評論
0/150
提交評論