




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.2.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將1到2020這2020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為()A.56383 B.57171 C.59189 D.612423.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標為1,則p=()A.1 B. C.2 D.44.已知一個三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.5.設等差數列的前項和為,若,則()A.10 B.9 C.8 D.76.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點,若點為上的任意一點,則的取值范圍為()A. B. C. D.7.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件8.設a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件9.復數的()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.一個封閉的棱長為2的正方體容器,當水平放置時,如圖,水面的高度正好為棱長的一半.若將該正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,則容器里水面的最大高度為()A. B. C. D.11.一個算法的程序框圖如圖所示,若該程序輸出的結果是,則判斷框中應填入的條件是()A. B. C. D.12.設,分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等差數列(公差不為0),其中,,成等比數列,則這個等比數列的公比為_____.14.在正方體中,為棱的中點,是棱上的點,且,則異面直線與所成角的余弦值為__________.15.“六藝”源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數”.某校在周末學生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩講座必須相鄰的不同安排種數為________.16.若x,y滿足,且y≥?1,則3x+y的最大值_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)當時,求不等式的解集;(2)若關于的不等式的解集包含,求實數的取值范圍.18.(12分)已知函數.(1)若在上為單調函數,求實數a的取值范圍:(2)若,記的兩個極值點為,,記的最大值與最小值分別為M,m,求的值.19.(12分)已知a>0,b>0,a+b=2.(Ⅰ)求的最小值;(Ⅱ)證明:20.(12分)為調研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數之比為,且成績分布在的范圍內,規(guī)定分數在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構成以2為公比的等比數列.(1)求的值;(2)填寫下面列聯(lián)表,能否在犯錯誤的概率不超過0.01的情況下認為“獲得優(yōu)秀作文”與“學生的文理科”有關?文科生理科生合計獲獎6不獲獎合計400(3)將上述調查所得的頻率視為概率,現從全市參考學生中,任意抽取2名學生,記“獲得優(yōu)秀作文”的學生人數為,求的分布列及數學期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點P在棱DF上.(1)若P是DF的中點,求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長度.22.(10分)十八大以來,黨中央提出要在2020年實現全面脫貧,為了實現這一目標,國家對“新農合”(新型農村合作醫(yī)療)推出了新政,各級財政提高了對“新農合”的補助標準.提高了各項報銷的比例,其中門診報銷比例如下:表1:新農合門診報銷比例醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院門診報銷比例60%40%30%20%根據以往的數據統(tǒng)計,李村一個結算年度門診就診人次情況如下:表2:李村一個結算年度門診就診情況統(tǒng)計表醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院一個結算年度內各門診就診人次占李村總就診人次的比例70%10%15%5%如果一個結算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門診平均費用分別為50元、100元、200元、500元.若李村一個結算年度內去門診就診人次為2000人次.(Ⅰ)李村在這個結算年度內去三甲醫(yī)院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個結算年度內門診就診人次占全村總就診人次的比例視為概率,求李村這個結算年度每人次用于門診實付費用(報銷后個人應承擔部分)的分布列與期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
先分別判斷命題真假,再由復合命題的真假性,即可得出結論.【詳解】為真命題;命題是假命題,比如當,或時,則不成立.則,,均為假.故選:B【點睛】本題考查復合命題的真假性,判斷簡單命題的真假是解題的關鍵,屬于基礎題.2、C【解析】
根據“被5除余3且被7除余2的正整數”,可得這些數構成等差數列,然后根據等差數列的前項和公式,可得結果.【詳解】被5除余3且被7除余2的正整數構成首項為23,公差為的等差數列,記數列則令,解得.故該數列各項之和為.故選:C.【點睛】本題考查等差數列的應用,屬基礎題。3、C【解析】
設直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達定理可得p.【詳解】由已知得F(,0),設直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標為1,則y0(y1+y2)=,所以p=2,故選C.【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關鍵,屬中檔題.4、B【解析】
根據三視圖得到幾何體為一三棱錐,并以該三棱錐構造長方體,于是得到三棱錐的外接球即為長方體的外接球,進而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個頂點位于長方體的四個頂點,即為三棱錐,且長方體的長、寬、高分別為,∴此三棱錐的外接球即為長方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當且僅當,時,三棱錐外接球的表面積取得最小值為.故選B.【點睛】(1)解決關于外接球的問題的關鍵是抓住外接的特點,即球心到多面體的頂點的距離都等于球的半徑,同時要作一圓面起襯托作用.(2)長方體的外接球的直徑即為長方體的體對角線,對于一些比較特殊的三棱錐,在研究其外接球的問題時可考慮通過構造長方體,通過長方體的外球球來研究三棱錐的外接球的問題.5、B【解析】
根據題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點睛】本題考查了等差數列的求和,意在考查學生的計算能力.6、D【解析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數的性質可求,從而可得的取值范圍.【詳解】由題設有,故,故橢圓,因為點為上的任意一點,故.又,因為,故,所以.故選:D.【點睛】本題考查橢圓的幾何性質,一般地,如果橢圓的左、右焦點分別是,點為上的任意一點,則有,我們常用這個性質來考慮與焦點三角形有關的問題,本題屬于基礎題.7、A【解析】
畫出“,,,所表示的平面區(qū)域,即可進行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點睛】本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.8、A【解析】
根據題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當"a=b當logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學生的計算能力和推斷能力.9、C【解析】所對應的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復平面的概念,屬于簡單題.10、B【解析】
根據已知可知水面的最大高度為正方體面對角線長的一半,由此得到結論.【詳解】正方體的面對角線長為,又水的體積是正方體體積的一半,且正方體繞下底面(底面與水平面平行)的某條棱任意旋轉,所以容器里水面的最大高度為面對角線長的一半,即最大水面高度為,故選B.【點睛】本題考查了正方體的幾何特征,考查了空間想象能力,屬于基礎題.11、D【解析】
首先判斷循環(huán)結構類型,得到判斷框內的語句性質,然后對循環(huán)體進行分析,找出循環(huán)規(guī)律,判斷輸出結果與循環(huán)次數以及的關系,最終得出選項.【詳解】經判斷此循環(huán)為“直到型”結構,判斷框為跳出循環(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時退出循環(huán),根據判斷框內為跳出循環(huán)的語句,,故選D.【點睛】題主要考查程序框圖的循環(huán)結構流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點:(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結構還是循環(huán)結構;(3)注意區(qū)分當型循環(huán)結構和直到型循環(huán)結構;(4)處理循環(huán)結構的問題時一定要正確控制循環(huán)次數;(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結果的試題中只要按照程序框圖規(guī)定的運算方法逐次計算,直到達到輸出條件即可.12、C【解析】
設過點作圓的切線的切點為,根據切線的性質可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【詳解】設過點作圓的切線的切點為,,所以是中點,,,.故選:C.【點睛】本題考查雙曲線的性質、雙曲線定義、圓的切線性質,意在考查直觀想象、邏輯推理和數學計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】
根據等差數列關系,用首項和公差表示出,解出首項和公差的關系,即可得解.【詳解】設等差數列的公差為,由題意得:,則整理得,,所以故答案為:4【點睛】此題考查等差數列基本量的計算,涉及等比中項,考查基本計算能力.14、【解析】
根據題意畫出幾何題,建立空間直角坐標系,寫個各個點的坐標,并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【詳解】根據題意畫出幾何圖形,以為原點建立空間直角坐標系:設正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【點睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.15、【解析】
分步排課,首先將“禮”與“樂”排在前兩節(jié),然后,“射”和“御”捆綁一一起作為一個元素與其它兩個元素合起來全排列,同時它們內部也全排列.【詳解】第一步:先將“禮”與“樂”排在前兩節(jié),有種不同的排法;第二步:將“射”和“御”兩節(jié)講座捆綁再和其他兩藝全排有種不同的排法,所以滿足“禮”與“樂”必須排在前兩節(jié),“射”和“御”兩節(jié)講座必須相鄰的不同安排種數為.故答案為:1.【點睛】本題考查排列的應用,排列組合問題中,遵循特殊元素特殊位置優(yōu)先考慮的原則,相鄰問題用捆綁法,不相鄰問題用插入法.16、5.【解析】
由約束條件作出可行域,令z=3x+y,化為直線方程的斜截式,數形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數得答案.【詳解】由題意作出可行域如圖陰影部分所示.設,當直線經過點時,取最大值5.故答案為:5【點睛】本題考查簡單的線性規(guī)劃,考查數形結合的解題思想方法,是中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)按進行分類,得到等價不等式組,分別解出解集,再取并集,得到答案;(2)將問題轉化為在時恒成立,按和分類討論,分別得到不等式恒成立時對應的的范圍,再取交集,得到答案.【詳解】解:(1)當時,等價于或或,解得或或,所以不等式的解集為:.(2)依題意即在時恒成立,當時,,即,所以對恒成立∴,得;當時,,即,所以對任意恒成立,∴,得∴,綜上,.【點睛】本題考查分類討論解絕對值不等式,分類討論研究不等式恒成立問題,屬于中檔題.18、(1);(2)【解析】
(1)求導.根據單調,轉化為對恒成立求解(2)由(1)知,是的兩個根,不妨設,令.根據,確定,將轉化為.令,用導數法研究其單調性求最值.【詳解】(1)的定義域為,.因為單調,所以對恒成立,所以,恒成立,因為,當且僅當時取等號,所以;(2)由(1)知,是的兩個根.從而,,不妨設,則.因為,所以t為關于a的減函數,所以..令,則.因為當時,在上為減函數.所以當時,.從而,所以在上為減函數.所以當時,.【點睛】本題主要考查導數在函數中的綜合應用,還考查了轉化化歸的思想和運算求解的能力,屬于難題.19、(Ⅰ)最小值為;(Ⅱ)見解析【解析】
(1)根據題意構造平均值不等式,結合均值不等式可得結果;(2)利用分析法證明,結合常用不等式和均值不等式即可證明.【詳解】(Ⅰ)則當且僅當,即,時,所以的最小值為.(Ⅱ)要證明:,只需證:,即證明:,由,也即證明:.因為,所以當且僅當時,有,即,當時等號成立.所以【點睛】本題考查均值不等式,分析法證明不等式,審清題意,仔細計算,屬中檔題.20、(1),,.(2)填表見解析;在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優(yōu)秀作文”與“學生的文理科”有關(3)詳見解析【解析】
(1)根據頻率分步直方圖和構成以2為公比的等比數列,即可得解;(2)由頻率分步直方圖算出相應的頻數即可填寫列聯(lián)表,再用的計算公式運算即可;(3)獲獎的概率為,隨機變量,再根據二項分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因為構成以2為公比的等比數列,所以,解得,所以,.故,,.(2)獲獎的人數為人,因為參考的文科生與理科生人數之比為,所以400人中文科生的數量為,理科生的數量為.由表可知,獲獎的文科生有6人,所以獲獎的理科生有人,不獲獎的文科生有人.于是可以得到列聯(lián)表如下:文科生理科生合計獲獎61420不獲獎74306380合計80320400所以在犯錯誤的概率不超過0.01的情況下,不能認為“獲得優(yōu)秀作文”與“學生的文理科”有關.(3)由(2)可知,獲獎的概率為,的可能取值為0,1,2,,,,分布列如下:012數學期望為.【點睛】本題考查頻率分布直方圖、統(tǒng)計案例和離散型隨機變量的分布列與期望,考查學生的閱讀理解能力和計算能力,屬于中檔題.21、(1).(2).【解析】
(1)以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,則(﹣1,0,2),(﹣2,﹣1,1),計算夾角得到答案.(2)設,0≤λ≤1,計算P(0,2λ,2﹣2λ),計算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據夾角公式計算得到答案.【詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點,AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標系,∵AD=2,AB=AF=2EF=2,P是DF的中點,∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),設異面直線BE與CP所成角的平面角為θ,則cosθ,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年醫(yī)院信息化建設新趨勢:電子病歷系統(tǒng)醫(yī)療信息化技術創(chuàng)新報告001
- 2025年醫(yī)院電子病歷系統(tǒng)優(yōu)化與醫(yī)療信息化產業(yè)生態(tài)協(xié)同創(chuàng)新模式實踐報告001
- 2025年醫(yī)藥企業(yè)研發(fā)外包(CRO)模式下的合同管理與合規(guī)性報告
- 2025年工業(yè)互聯(lián)網平臺量子通信技術在智能物流領域的應用研究報告
- 風格美學培訓課件
- 2025年工業(yè)互聯(lián)網平臺區(qū)塊鏈智能合約安全防護技術與風險評估報告
- 2025年財富管理行業(yè)客戶需求研究與服務升級策略報告
- 2025年儲能電池熱管理系統(tǒng)在智慧農業(yè)領域的應用前景報告
- 會計培訓試講課件
- 證監(jiān)局法制培訓課件下載
- 浙江省寧波市鄞州區(qū)2025年八年級下學期期末數學試題及參考答案
- 蘭花種植項目可行性研究報告(專業(yè)完整版)
- 學校固定資產管理培訓
- 警校面試考試試題及答案
- 2025年河北省第二屆職業(yè)技能大賽(智能硬件裝調賽項)考試復習題庫(含答案)
- 法治素養(yǎng)考試試題及答案
- 2024-2025人教版一年級下冊數學期末考試卷附答案 (三套)
- 風電工程培訓課件
- 廣東省湛江市赤坎區(qū)2023-2024學年五年級下學期語文期末試卷(含答案)
- 2025厭氧好氧缺氧(AOA)活性污泥法設計標準
- GB/T 4340.2-2025金屬材料維氏硬度試驗第2部分:硬度計的檢驗與校準
評論
0/150
提交評論