




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
中文3550字作者R.Snyder,Member FrederickI.Mopsik國籍:America出處:IEEETRANSACTIONSONINSTRUMENTATIONANDEASUREMENTAPrecisionCapacitanceCellforMeasurementofThinFilmOut-of-PlaneIII:ConductingandSemiconductingMaterialspaperdescribestheconstruction,calibration,anduseofaprecisioncapacitance-basedmetrologyforthemeasurementofthethermalandhygrothermal(swelling)expansionofthinfilms.Itisdemonstratedthatwiththisversionofourcapacitancecell,materialsranginginelectricalpropertiesfrominsulatorstoconductorscanbemeasured.Theresultsofourmeasurementsonp-type<100>-orientedsinglecrystalsiliconarecomparedtotherecommendedstandardreferencevaluesfromtheliteratureandareshowntobeinexcellentagreement.IndexTerms—Capacitancecell,coefficientofthermalexpansion(CTE),guardedelectrode,highsensitivitydisplacement,innerlayerdielectrics,polymers,thinfilms.INTRODUCTIONTHEcoefficientofthermalexpansion(CTE)isakeydesignparameterinmanyapplications.Itisusedforestimatingdimensionaltolerancesandthermalstressmismatches.Thelatterisofgreatimportancetotheelectronicsindustry,wherethermalstressescanleadtodevicefailure.Foraccuratemodelingofthesesystems,reliablevaluesareneededfortheCTE.Traditionally,displacementgaugetechniquessuchasthermomechanicalanalysis(TMA)havebeenutilizedfordeterminingtheCTE.However,standardtestmethodsbasedonthesetechniquesarelimitedtodimensionsgreaterthan100mm[1-2.]Thisisproblematicformaterialswhichcanbeformedonlyasthinlayers(suchascoatingsandcertaininnerlayerdielectrics).Additionally,thereissomequestionastowhethervaluesobtainedonlargersamples(bulkmaterial)arethesameasthoseobtainedforthinfilms,evenwhentheeffectsoflateralconstraintsareincludedinthecalculations.Ithaslongbeenrecognizedthatcapacitance-basedmeasurements,inprinciple,canofferthenecessaryresolutionforthesefilms.Forapairofplane-parallelplatecapacitors,ifthesampleisusedtosetthespacingoftheplatesd whilebeingoutsideofthemeasurementpath,thenforaconstanteffectiveareaoftheplatesA,thecapacitanceina AvacuumC
vac
isgivenbythewell-known
vac
0 (1)dwhere
isthepermittivityoffreespace8.854pFm).Withthesample0 0outsideofthemeasurementpathandonlyairetweentheelectrodes,thevacuumcapacitanceisobtainedromthemeasuredcapacitanceC byC Cvac air
(2)whereair isthedielectricconstantofair.Inthreepreviouspapers,thedesignanddatareductiontechniqueswerepresentedforourthree-terminalcapacitance-basedmetrologyforthinpolymerfilmmeasurements.Thefirstpaper(I)describedtheinitialdesignbasedongold-coatedZerodur.However,severalproblemswereencountered.ItwasdiscoveredthatZerodurdisplaysferroelectricbehavior,withanapparentCurietemperatureof206℃asdeterminedbyfittingwithaCurie–Weisslaw.TherapidchangeinthedielectricconstantoftheZeroduralongwithacouplingfromthecentralcontactthroughtheguardgaptothehighelectrodecreatedanapparentnegativethermalexpansion.Thesecondproblemwiththeinitialdesignwaswiththegoldcoating.Thiscoatinghadthetendencyto―snowplow‖whenscratchesformedinthesurfacecreatingraisedareaswhichwouldresultinshortswhenmeasurementswereperformedonthinsamples.Thesecondproblemwiththegoldwasthatitunderwentmechanicalcreepunderloading.Toresolvetheseproblems,anewelectrodewasdesignedfromfusedquartzcoatedwithnichrome.Agroovefilledwithconductivesilverpaintwasaddedtothebacksideofthebottomelectrodearoundthecentralcontacttointerceptanyfieldlinesbetweenthecentralwirecontactthroughtheguardgaptothehighelectrode.Thenewdesignwasdescribedinthesecondpaper(II)alongwiththermalexpansionmeasurementson<0001>-orientedsinglecrystalsapphire(AlO2 3
)anda14-m thickinnerlayerdielectricmaterialwasrecognizedinIIthatthedatareductionwassimpleaslongastheairfillingthegapbetweenthecapacitorplateswasdry.However,toexpandtheutilityofthecapacitancecelltohygrothermalexpansion(i.e.,swellinginahumidenvironment),thethirdpaper(III)describedthedatareductiontechniquesnecessaryforuseofthecapacitancecellunderhumidconditions.Fig.1.Schematicoftheelectrodes.Notethattheshadedareascorrespondtothenichromecoating.TheresolutionoftheinstrumentwasdeterminedinIIandIII.Fordry,isothermalconditions,thecapacitancecellcanmeasurerelativechangesinthicknessontheorderof107 ,fora0.5-mmthicksample;thiscorrespondstoaresolutionontheorderof51011m.Underdryconditionsinwhichthetemperatureischanged,thereproducibilityofarelativethicknesschange(e.g.,forCTEmeasurement)isontheorderof106
.Finally,underhumidconditions,theultimateresolutionisprimarilyafunctionoftemperature—theactualvaluesofwhicharegiveninIII.InII,adeficiencywasrecognizedinthedesign.Neithersemiconductingorconductingmaterialscouldbeusedasthematerialfortesting.Thiswasespeciallythecaseforsilicon,whichformsaSchottkybarrierwithnichromeandactsasavoltagerectifier.Additionally,becauseofthenatureoftheinterface,the1kHzmeasurementfrequencygeneratesultrasoundwhichresultsintheepoxycontactsbeingshakenloose.WementionedbrieflyinIIthatifthetopelectrodehadaguardringadded,thesamplecouldbeheldatzeropotentialandthiswouldnolongerbeaproblem.Todemonstratethis,weconstructedsuchacapacitancedesignandtestingofwhicharedescribedinthispaper.CAPACITANCECELLDESIGNElectrodeDesignBecausetheconstructionoftheelectrodeswasthoroughlydescribedinII,alessdetaileddescriptionwillbegivenwithemphasisonthechangesinthedesign.Theelectrodeswereconstructed,asbefore,inthefollowingmanner(seeFig.1).10cm2cmcylindricalblanksoffusedquartzweregroundandpolishedtoopticalflatness.Smallholesweredrilledthroughthecenterofeachblanksothat16gaugewirecouldbeinsertedintothem.Thewireswerethencementedwithaconductingepoxy(resistivityof4104cmatAsecondholeandwirewerethenaddedtoeachblankapproximately0.75cmfromtheedgeoftheblanks.Acoatingofnichromewasthenaddedsuchthatitcoveredallsurfacesexceptforasmallareaaroundthebackoftheblanks.Aguardgapwasscribedonboththetopandbottomelectrodessuchthatnomaterialwasraisedwhichcouldcauseashort.Onthebottomelectrode,theguardgapwasscribedona3cmdiameter,andonthetopelectrodeitwasscribedona6cmdiameter.Inthebottomelectrode,a1cmdiameterwellwascutintothebackoftheblankwhichextendedtowithin5mmofthefrontsurface.Thiswellwasthenfilledwithathinconductivesilverpaint.Thepaintconnectedtheouterguardring’smetallizationtotheedgeofthewell.Fig.2.Schematicoftheassembledcapacitancecell.CellAssemblyandCapacitanceMeasurementsTheholderdescribedinIIwasemployedforthemodifiedcell.Inthisversionofthecapacitancecell,bothconductorsofthesemirigidcoaxiallinewereconnectedtothetopelectrode.Thecenterconnectorandbraidwereconnectedtothecenterareaandouterguardring,respectively,byfine30gaugewirecoils.ThecoilswereterminatedwithcenterfemalecontactsfromBNCconnectors,whichcouldbeeasilyconnected/disconnectedtothe16gaugetinnedcopperwirethatwasepoxiedintotheelectrodes.AschematicoftheassembledcellisshowninFig.2.ThefemaleBNCconnectoronthebrassholder(bottomelectrode)wasconnectedtothelowterminal,andthefemaleBNCconnectoronthesemirigidcoaxiallinewasconnectedtothehighterminal.AllconnectionsfromthecapacitancecelltothebridgewereperformedusingTefloninsulatedlownoisecables.Thecapacitancemeasurementswereobtainedusingacommercialautomatedthree-terminalcapacitancebridgewhichusesanoven-stabilizedquartzcapacitorandhasacitedguaranteedrelativeresolutionofbetterthan5107
pF/pFfortherangeofcapacitancesusedwiththiscell2500A1kHzUltra-PrecisionCapacitanceBridgewithOptionE).(Notethatthe―useful‖relativeresolutionissuggestedbythemanufacturertobetypicallyafactorof10ormorebetterthatthecitedrelativeresolution.)Thecapacitancebridge’swasverifiedagainstaNationalInstitutefsdy(NIST)dderdifferencebetweenthetwowaswithinthecapacitor’suncertainty.Allmeasurementswereperformedinatemperature/humiditychamberequippedwitha90℃dewpointairpurge.Thecellwasequilibratedateachtemperatureuntiltherelativefluctuationsinthevacuumcorrectedcapacitancewerenomorethan10710pF/pF.Barometricpressurewasmonitoredusingadigitalpressuresensorwithamanufacturer’sstateduncertaintyof0.1mmHg(13Pa).AsstatedpreviouslyinII,thetemperatureofthecellwascalibratedintermsofthechambertemperaturewitharesistancetemperaturedevice(RTD)mountedtothecellwiththermallyconductingpaste.TheRTDwascalibratedagainstaNISTcertifiedITS-90standardreferencethermometer.AsinII,becauseweareusingadryairpurge,wecanusetheidealgaslawcorrectiontodeterminethemolarvolumeoftheairvtocalculateCair vacvair
RT(3)pWhereT---absolutetemperature;P---pessure;R---gasconstant(R8.314507Lkpamol1K1)[12].Fromthisandthevalueofthemolarpolarizationofdryairobtainedfromtheliterature,P4.31601103mol[13],thedielectricconstantoftheairseparatingtheelectrodesis air P air v11Pairvaieair
aie (4)MEASUREMENTSCellCalibrationTouse(1)tocalculatethethicknessofthesample,theeffectiveareamustbeknown.Todeterminethisvalueasafunctionoftemperature,asinII,wecalibratedtheareaandareaexpansionthroughtheuseofZerodurspacerswiththicknessesofapproximately2.0mm.AsinII,theactualdimensionsoftheZerodurspacersweremeasuredinaballtoplaneconfigurationwithaspeciallydesignedcaliperequippedwithalinearvoltagedisplacementtransducer(LVDT)thathadaresolutionof1104mm.ThecellwasassembledwiththeZerodurspacersusingthesamplepreparationdescribedinII.Measurementswereperformedat0℃,25℃,50℃,75℃,100℃,125C,and150℃.Thecellwascycledthroughthisrangeoftemperaturethreetimes,andthevaluesforC werevacdeterminedforeachrunafteraveragingallthepropertiesoverapproximately1husing10sincrements(atotalof360datapoints)afterequilibriumwasachieved.TheareaAwascalculatedusingtheroomtemperaturethicknessmeasurementsandthevalueforC .Allsubsequentdeterminationsof A,athigherandlowertemperatures,werevaccorrectedfortheslightexpansionandcontractionoftheZerodurasafunctionoftemperature0.05106K1).TheresultsoftheeffectiveradiusoftheelectrodeZerodurasafunctionoftemperatureareplottedinFig.3.Fig.3.EffectiveradiusofthebottomelectrodeasafunctionoftemperatureobtainedbymeasurementsusingZerodurandcorrectingforitsslightexpansion.Fig.4.Relativeexpansionofthe<100>-orientedsinglecrystalsiliconasafunctionoftemperature.Thelineisaplotofthedatafromp-TypeDoped<100>SingleCrystalSiliconTodemonstratetheabilityofthecelltomeasuresiliconandtoprovideaccuratevaluesforthermalexpansion,a0.6-mmthickwaferofsingle-sidepolished,backsidestressrelieved,p-type,<100>-orientedsinglecrystalsiliconwitharesistivityof15 cmwasn(by)oe.hescm2.ewerethencleanedwithultrapuredistilledwaterandethanol.ThecellwasassembledinthesamefashionaswasdescribedinIIandwasplacedinavacuumovenatambienttemperaturesforapproximately1htoeffectivelywringthesample.3.Measurementswereperformedat50℃,75℃,100℃,125℃,andaminimumoftwotimeseach.(Note:Nopointwastakenat0℃duetoproblemswiththecompressorintheenvironmentalchamber.)ThewaferthicknesswasdeterminedusingtheeffectiveradiusversustemperaturedatashowninFig.3.TheresultsofthisanalysisareshowninFig.4alongwiththerecommendedexpansiondataonsiliconobtainedshouldbenotedthatthestandardreferencedatawasdefinedrelativetowhereaswehavemeasured,forconvenience,relativeto25℃.Therefore,thestandardreference,relativeexpansiondatawasshiftedinFig.4byanamountSequaltoST5KwhereT istheCTEattemperatureTtakenfromItisapparentthatthetwosetsofdataagreewithintheexperimentaluncertainty.(Theerrorbarissmalleronthe25℃datapointthanonthehighertemperaturesduetothefactthatmorerepeatrunswereperformed,whichreducedtheuncertaintyforthatdatapoint.)Thisdemonstratesseveralkeyconclusionsregardingthecapacitancecell.First,thelimitationsofthepreviousdesignhavebeeneliminated;siliconandconductingsamplescanbemeasured.Second,theresultsshowthatthecapacitancecellproducesdatathatagreewithliteraturedata.Finally,wehavefurtherdemonstratedtheadvantageofourtechniqueformeasurementofthinsamplesovercommerciallyavailableTMAs.Thevalidityofthisstatementcanbeshownbyconsideringtheresultsofaroundrobinstudy.ThisstudywasperformedamongresearchersatNIST,IBMEndicott,DEC,MicroelectronicsandComputerTechnologyCorporation,NavalSurfaceWarfareDivision,CALCEElectronicProductsandSystemsCenterattheUniversityofMaryland,CornellUniversity,UniversityofTexasatAustin,PurdueUniversity,andtheSemiconductorResearchCorporation(SRC)onthemeasurementoftheCTEofsinglecrystal<100>siliconusingvariouscommercial1.1765-mmthicksampleof<100>singlecrystalsiliconwasusedbyallparticipants.AllreportedvaluesfortheCTEofsiliconwerebelowtheliteraturevaluesforthecorrespondingtemperaturerangesby15%to40%.Oursamplewasapproximatelyhalfasthickastheirsample,yetourvaluesarewithintheexperimentalerror.(Itshouldberecalledthatourtotalprecisionisindependentofactualthicknessandthemainerrorisduetoelectrode/sampleinterfacialeffects.Therefore,hadweusedthethickersample,aswasusedintheroundrobinstudy,theerrorinourresultswouldhavebeenreduced.)Inclosing,itshouldbementionedthatsincewasthe―worstcase‖scenarioforthenewcapacitancecell,itwasdeemedunnecessarytoperformmeasurementsonsinglecrystalsofametallicsamplewhichhaveamuchhigherCTE.However,asinglemeasurementwastakenonthesiliconbyconnectingthebraidsfromthehighandlowterminalstogethershortingthetwoguardringsasifitweredonebyametallicsample.Themeasuredcapacitancewasunchanged;thisthereforedemonstratedthatconductingmaterialscanbemeasured.CONCLUSIONSWehavepresentedthedesignsandimplementationofourcapacitancecellforthemeasurementofconductingandsemiconductingmaterials(aswellasdielectrics).Thethermalexpansiondata,obtainedwiththenewversionofourcapacitancecell,onp-typedopedsinglecrystalsiliconhavedemonstratedboththeabilityofthecelltomeasuresiliconandconductingsamplesandtheabilityofthecelltoprovideaccurateCTEdataonthesetypesofmaterials.Asaresult,itisapparentthatthismetrologycanalsobeappliedtothinpolymerfilmsdepositedonsiliconsubstrates.Furthermore,thiscellcanalsobeusedtostudythehygrothermalexpansion(swellingduetothepresenceofmoisture)byutilizingthedatareductiontechniquesdescribedinIII.Accordingly,thistechniqueshouldbeespeciallyusefultothemicroelectronicspackagingindustryforthecharacterizationofinnerlayerdielectricsaswellascompositestructures.ACKNOWLEDGMENTTheauthorswouldliketothankDr.J.R.EhrsteinintheSemiconductorElectronicsDivisionatNISTforprovidingthesiliconsample.一種精密電容測量薄膜平面擴張的第三部分:導體和半導體材料摘要本文介紹了設計、校準,并且使用精密電容基礎計量學來測量薄膜的熱、濕熱(腫脹)型<100單晶硅結果與參考文獻比較,得到了良好證明。電容、熱膨脹系數(shù)介質、聚合物、薄膜簡介熱膨脹系數(shù)(CET)是許多應用的一個關鍵設計參數(shù)。它是用來估算尺寸和熱應力的錯位。熱應力是十分重要的,它會導致電子行業(yè)中的設備故障。系統(tǒng)的精確建模,可靠性的測定都需要熱膨脹系數(shù)(CET)的核定。傳統(tǒng)上的位移測量方法如熱應力分析(TMA)可以用來確定熱膨脹系數(shù)0m的基礎上。這些材料局限于只能作為薄層得形成(如涂料和內層介電層)。此外,在更大的樣本(散裝材料)甚至當薄膜橫向約束的影響下所獲得的結果是否與理論值一致。人們很早就認識到,在原則上,用過電容測量可以為薄膜提供必要的參數(shù)。d,然后兩極板相互A,其真空電容量為C
0A
(1)vac d 是真空介電常數(shù)8.854pFm),只用來測量的外極板,兩極板間只0 0有空氣,空電容量C表達式為C vac
Cair
(2)式中
air
是空氣介電常數(shù)在前三篇論文,描述設計和數(shù)據(jù)還原技術的發(fā)展現(xiàn)狀,并提出了三端口電容(I)的初步設計。然而遇介電形成的表面劃傷的地區(qū)會導致測量誤差。第二個關于涂金的問題是它經歷載荷下的力學蠕變。極之間的環(huán)行線接觸到任何領域。第二篇論文介紹了新的設計,單晶藍寶石(氧化二鋁14m為當電容極板間填充的空氣是干燥時,數(shù)據(jù)分析是簡單的。然而,電容還需測量薄膜的濕熱膨脹(例如,在一個潮濕的環(huán)境中的膨脹),論文Ⅲ中描述了電容在高溫高濕條件下數(shù)據(jù)分析的必要技術。1電極原理圖。注意陰影部分對應的鎳鉻合金涂層在論文Ⅱ、Ⅲ中已經確定儀器的分辨率。干燥、等溫條件下,電容對于一個10751011m條件下改變溫度,相對厚度變化(例如熱膨脹系數(shù))大約為106。最后,在潮濕的條件下,最終解決溫度的影響——這個將在論文Ⅲ中得到
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 豬鏈球菌病的綜合診斷與防治
- 寵物養(yǎng)護專業(yè)建設方案
- 創(chuàng)業(yè)計劃書syb直播帶貨
- 短視頻時代中國傳統(tǒng)文化的對外宣傳
- 【7道期末】安徽省淮北市五校聯(lián)考+2023-2024學年七年級下學期期末道德與法治試題(含解析)
- 2025年中國拖車鉤行業(yè)市場前景預測及投資價值評估分析報告
- 徐州市王杰中學高中歷史二專題三第一課社會主義建設在探索中曲折發(fā)展學案
- 山東保安公司管理制度
- 培訓學員紀律管理制度
- 醫(yī)院復雜科室管理制度
- 中國文化概觀-終結性考核-國開(SC)-參考資料
- 體育行業(yè)在線體育服務平臺建設方案
- 玩具無人機產業(yè)深度調研及未來發(fā)展現(xiàn)狀趨勢
- 財經基礎知識與技能試卷
- DB43-T 3080.10-2024 湖南省立木材積、生物量及碳系數(shù)計量監(jiān)測系列模型 第10部分:林木和林分生長率模型
- 國家職業(yè)技術技能標準 X2-10-07-17 陶瓷產品設計師(試行)勞社廳發(fā)200633號
- 2020年福建省中考滿分作文《學習與性格》5
- 我國的生產資料所有制
- 2024年汽車操作系統(tǒng)趨勢及TOP10分析報告
- 初中數(shù)學《相似三角形》壓軸30題含解析
- 2024-2030年中國磷酸行業(yè)供需態(tài)勢及投資機遇分析研究報告
評論
0/150
提交評論