




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濟寧市曲阜王莊鄉紙坊中學2021-2022學年高三數學文模擬試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.閱讀右邊的程序框圖,該程序輸出的結果是
(
)A.9
B.81
C.729
D.6561參考答案:C
2.設等差數列的前n項和為,若,,則使>0的最小正整數n的值是()A.8
B.9
C.10
D.11參考答案:C3.若函數在區間上單調遞減,則的取值范圍是(
)A.0≤≤ B.0≤≤ C.≤≤3 D.≤≤3參考答案:D【分析】利用正弦函數的單調減區間,確定函數的單調減區間,根據函數f(x)=sinωx(ω>0)在區間上單調遞減,建立不等式,即可求ω取值范圍.【詳解】令ωx(k∈Z),則x∵函數f(x)=sinωx(ω>0)在區間上單調遞減,∴且當滿足題意,∴故選:D.【點睛】本題考查正弦函數的單調性,考查解不等式,考查學生的計算能力,屬于基礎題.4.如圖所示,點,B是曲線上一點,向矩形OABC內隨機投一點,則該點落在圖中陰影內的概率為(
)A. B. C. D.參考答案:A【分析】根據定積分求陰影部分面積,再根據幾何概型概率公式求結果.【詳解】陰影部分面積為,所以所求概率為,選A.【點睛】本題考查利用定積分求面積以及幾何概型概率,考查基本分析求解能力,屬基礎題.5.按如下程序框圖,若輸出結果為S=170,則判斷框內應補充的條件為(
)A.
B.
C.
D.參考答案:B略6.若函數f(x)=x3﹣3x在(a,6﹣a2)上有最大值,則實數a的取值范圍是()A.(﹣,﹣1) B.(﹣,﹣1] C.(﹣,﹣2) D.(﹣,﹣2]參考答案:D【考點】利用導數求閉區間上函數的最值.【分析】因為給的是開區間,最大值一定是在該極大值點處取得,因此對原函數求導、求極大值點,求出函數極大值時的x值,然后讓極大值點落在區間(a,6﹣a2)內,依此構造不等式.即可求解實數a的值.【解答】解:由題意f(x)=x3﹣3x,所以f′(x)=3x2﹣3=3(x+1)(x﹣1),當x<﹣1或x>1時,f′(x)>0;當﹣1<x<1時,f′(x)<0,故x=﹣1是函數f(x)的極大值點,f(﹣1)=﹣1+3=2.,x3﹣3x=2,解得x=2,所以由題意應有:,解得﹣<a≤2.故選:D.7.已知銳角滿足:,,則的大小關系是(
)A、
B、
C、
D、參考答案:A略8.設,,則(
)A. B.C. D.參考答案:B【分析】先求集合B,再利用補集及交集運算求解即可【詳解】由題得,,所以.故選.【點睛】本題考查集合的運算,二次不等式求解,準確計算是關鍵,是基礎題9.若拋物線y2=2px,(p>0)的焦點與雙曲線=1(a>0,b>0)的右頂點重合,且雙曲線的一條漸近線與拋物線的準線交于點(﹣2,﹣1),則雙曲線的離心率是(
) A. B. C. D.參考答案:B考點:雙曲線的簡單性質.專題:計算題;圓錐曲線的定義、性質與方程.分析:求出拋物線的焦點和雙曲線的右頂點,以及拋物線的準線方程和雙曲線的漸近線方程,求得交點坐標,即可得到a=2,b=1,再由a,b,c的關系和離心率公式,即可得到.解答: 解:拋物線y2=2px(p>0)的焦點為(,0),雙曲線=1(a>0,b>0)的右頂點為(a,0),則由題意可得a=,由于拋物線的準線為x=﹣,雙曲線的漸近線方程為y=±x,則交點為(﹣a,±b),由題意可得a=2,b=1,c==.e==.故選B.點評:本題考查拋物線和雙曲線的方程和性質,考查漸近線方程和拋物線的準線方程的運用,考查離心率的求法,考查運算能力,屬于基礎題.10.已知函數向左平移個單位后,得到函數,下列關于的說法正確的是(
).圖象關于點中心對稱
.圖象關于軸對稱.在區間單調遞增
.在單調遞減參考答案:C二、填空題:本大題共7小題,每小題4分,共28分11.下列說法:①“若,則是銳角三角形”是真命題;
②“若,則”的逆命題為真命題;③;④函數的最小正周期是;⑤在△ABC中,是的充要條件;
其中錯誤的是 .
參考答案:②③④12.“”是“”的
條件;(填:充分非必要條件;必要非充分條件;充要條件之一。)參考答案:充分非必要條件13.已知集合,,則
.參考答案:14.(4分)(2015?上海模擬)(理)若平面向量滿足||=1(i=1,2,3,4)且=0(i=1,2,3),則||可能的值有個.參考答案:3【考點】:平面向量數量積的運算;向量的模.【專題】:平面向量及應用.【分析】:由=0可得,分類作圖可得結論.解:由=0可得,若四向量首尾相連構成正方形時(圖1),||=0,當四向量如圖2所示時,||=2,當四向量如圖3所示時,||=2,故答案為:3【點評】:本題考查平面向量的模長,涉及分類討論的思想,屬中檔題.15.的展開式中的系數為_______;參考答案:224二項式展開式的通項公式為,令,解得,故的系數為.
16..若變量x,y滿足約束條件,則目標函數z=y-2x的最大值是
.參考答案:14作出不等式組對應的平面區域如圖所示:由得,平移直線,由圖象可知當直線經過點A時,直線的截距最大,此時最大.由得,即,代入目標函數得,即的最大值是14.故答案為14.點睛:本題主要考查線性規劃中利用可行域求目標函數的最值,屬簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的頂點就是最優解);(3)將最優解坐標代入目標函數求出最值.17.設x,y為實數,且+=,則x+y=
.參考答案:4三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.若,且。(1)
求的最小值及對應的x值;(2)x取何值時且。
參考答案:解析:(1)∵,∴,又∵,∴,∵,∴,即,又∵,∴,∴b=2,當
時,有最小值,此時。
---------------8分(2)若且,則∴0<x<1。
---------14分19.(12分)設O為坐標原點,動點M在橢圓C:上,過M作x軸的垂線,垂足為N,點P滿足(1)求點P的軌跡方程;(2)設點在直線x=-3上,且.證明過點P且垂直于OQ的直線l過C的左焦點F.參考答案:20.如圖,A,B是海面上位于東西方向相距海里的兩個觀測點,現位于A點北偏東45°,B點北偏西60°的D點有一艘輪船發出求救信號,位于B點南偏西60°且與B點相距海里的C點的救援船立即前往營救,其航行速度為30海里每小時,該救援船到達D點需要多長時間?參考答案:解:由題意知海里,∠DBA=90°-60°=30°,∠DAB=45°,∴∠ADB=105°。在中,由正弦定理得,∴(海里)又∠DBC=∠DBA+∠ABC=30°+(90°-60°)=60°,BC=海里,∴在△DBC中,由余弦定理得,∴CD=30(海里),所以C船到達D點需要時間小時。答:救援船到達D點需要時間為1小時。21.已知函數,.(1)若恒成立,求實數的值;(2)若方程有一根為,方程的根為,是否存在實數,使?若存在,求出所有滿足條件的值;若不存在,說明理由.參考答案:令,,令,當時,總有,所以是上的增函數,即,故,在上是增函數,所以,即在無解.綜上可知,不存在滿足條件的實數.
----------------------12分考點:1.利用導數判斷函數的單調區間;2.利用導數求函數的最值.
略22.(本小題滿分12分)已知橢圓上任一點P,由點P向x軸作垂線段PQ,垂足為Q,點M在PQ上,且,點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)過點D(0,-2)作直線l與曲線C交于A、B兩點,設N是過點且平行于軸的直線上一動
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年福建省事業單位招聘考試綜合類專業能力測試試卷(建筑類)試題
- 2025年電子商務師(中級)電子商務法律法規與政策案例分析試卷
- 2025年統計學專業期末考試:抽樣調查方法與統計推斷綜合案例分析試題
- 2025年鋼筋工(高級)考試試卷:鋼筋工程施工質量事故分析及預防
- 2025年南京市事業單位招聘考試教師招聘化學學科專業知識試題(初中)
- 2025年非心源性胸痛診療試題
- 2025年建筑行業農民工權益保障與用工模式變革下的行業風險管理與創新實踐案例報告
- 2025年國際化教育中跨文化交流能力培養的師資培訓策略報告
- 化工工藝安全操作與管理要點測試題
- 綠色建筑材料市場推廣政策與綠色建筑市場需求匹配度分析報告
- 妊娠合并貧血護理課件
- 左美馬嗪行業深度研究分析報告(2024-2030版)
- 荊州中學2024-2025學年高二下學期6月月考語文試題(定)
- 腦機接口硬件優化-洞察及研究
- 預算與績效管理制度
- 理論聯系實際談一談如何傳承發展中華優-秀傳統文化?參考答案
- T/SFABA 2-2016食品安全團體標準食品配料焙烤食品預拌粉
- T/CI 307-2024用于疾病治療的間充質干細胞質量要求
- 探索Python數據科學的考試試題及答案
- 《新生兒高膽紅素血癥診治指南(2025)》解讀課件
- 《藝術家心中的自畫像》課件
評論
0/150
提交評論