




下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.已知是一元二次方程的一個解,則m的值是A.1 B. C.2 D.2.用半徑為3cm,圓心角是120°的扇形圍成一個圓錐的側面,則這個圓錐的底面半徑為()A. B.1.5cm C. D.1cm3.兩個連續奇數的積為323,求這兩個數.若設較小的奇數為,則根據題意列出的方程正確的是()A. B.C. D.4.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.5.在中,,則的長為()A. B. C. D.6.已知點A(m2﹣5,2m+3)在第三象限角平分線上,則m=()A.4 B.﹣2 C.4或﹣2 D.﹣17.將二次函數y=ax2的圖象先向下平移2個單位,再向右平移3個單位,截x軸所得的線段長為4,則a=()A.1 B. C. D.8.如圖,矩形的對角線交于點,已知,,下列結論錯誤的是()A. B. C. D.9.如圖,在平面直角坐標系中,與軸相切,直線被截得的弦長為,若點的坐標為,則的值為()A. B. C. D.10.在體檢中,12名同學的血型結果為:A型3人,B型3人,AB型4人,O型2人,若從這12名同學中隨機抽出2人,這兩人的血型均為O型的概率為()A. B. C. D.二、填空題(每小題3分,共24分)11.一條排水管的截面如圖所示,已知排水管的半徑OB=10,水面寬AB=16,則截面圓心O到水面的距離OC是______.12.若⊙P的半徑為5,圓心P的坐標為(﹣3,4),則平面直角坐標系的原點O與⊙P的位置關系是_____.13.如圖,為測量某河的寬度,在河對岸邊選定一個目標點A,在近岸取點B,C,D,使得AB⊥BC,CD⊥BC,點E在BC上,并且點A,E,D在同一條直線上.若測得BE=10m,EC=5m,CD=8m,則河的寬度AB長為______________m.14.已知兩個相似三角形的相似比為2︰5,其中較小的三角形面積是,那么另一個三角形的面積為.15.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=40cm,EF=20cm,測得邊DF離地面的高度AC=1.5m,CD=8m,則樹高AB=▲.16.若一個圓錐的側面展開圖是一個半徑為3cm,圓心角為120°的扇形,則該圓錐的底面半徑為__________cm.17.等腰△ABC的腰長與底邊長分別是方程x2﹣6x+8=0的兩個根,則這個△ABC的周長是_____.18.小明發現相機快門打開過程中,光圈大小變化如圖1所示,于是他繪制了如圖2所示的圖形.圖2中留個形狀大小都相同的四邊形圍成一個圓的內接六邊形和一個小正六邊形,若PQ所在的直線經過點M,PB=5cm,小正六邊形的面積為cm2,則該圓的半徑為________cm.三、解答題(共66分)19.(10分)已知拋物線y=x2﹣bx+2b(b是常數).(1)無論b取何值,該拋物線都經過定點D.請寫出點D的坐標.(2)該拋物線的頂點是(m,n),當b取不同的值時,求n關于m的函數解析式.(3)若在0≤x≤4的范圍內,至少存在一個x的值,使y<0,求b的取值范圍.20.(6分)如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點,且∠AFE=∠B,(1)求證:△ADF∽△DEC(2)若AB=4,AD=3,AE=3,求AF的長.21.(6分)如圖,在△ABC中,AB=AC,CD是AB邊上的中線,延長AB到點E,使BE=AB,連接CE.求證:CD=CE.22.(8分)在畢業晚會上,同學們表演哪一類型的節目由自己摸球來決定.在一個不透明的口袋中,裝有除標號外其它完全相同的A、B、C三個小球,表演節目前,先從袋中摸球一次(摸球后又放回袋中),如果摸到的是A球,則表演唱歌;如果摸到的是B球,則表演跳舞;如果摸到的是C球,則表演朗誦.若小明要表演兩個節目,則他表演的節目不是同一類型的概率是多少?23.(8分)如圖所示,某數學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是45°,若坡角∠FAE=30°,求大樹的高度(結果保留根號).24.(8分)如圖,在等腰中,,以為直徑的,分別與和相交于點和,連接.(1)求證:;(2)求證:.25.(10分)在平面直角坐標系xOy中,⊙O的半徑為r(r>0).給出如下定義:若平面上一點P到圓心O的距離d,滿足,則稱點P為⊙O的“隨心點”.(1)當⊙O的半徑r=2時,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“隨心點”是;(2)若點E(4,3)是⊙O的“隨心點”,求⊙O的半徑r的取值范圍;(3)當⊙O的半徑r=2時,直線y=-x+b(b≠0)與x軸交于點M,與y軸交于點N,若線段MN上存在⊙O的“隨心點”,直接寫出b的取值范圍.26.(10分)如圖,在中,直徑垂直于弦,垂足為,連結,將沿翻轉得到,直線與直線相交于點.(1)求證:是的切線;(2)若為的中點,,求的半徑長;(3)①求證:;②若的面積為,,求的長.
參考答案一、選擇題(每小題3分,共30分)1、A【解析】把x=1代入方程x2+mx﹣2=0得到關于m的一元一次方程,解之即可.【詳解】把x=1代入方程x2+mx﹣2=0得:1+m﹣2=0,解得:m=1.故選A.【點睛】本題考查了一元二次方程的解,正確掌握一元二次方程的解的概念是解題的關鍵.2、D【詳解】解:設此圓錐的底面半徑為r,根據圓錐的側面展開圖扇形的弧長等于圓錐底面周長可得,,解得:r=1.故選D.3、B【分析】根據連續奇數的關系用x表示出另一個奇數,然后根據乘積列方程即可.【詳解】解:根據題意:另一個奇數為:x+2∴故選B.【點睛】此題考查的是一元二次方程的應用,掌握數字之間的關系是解決此題的關鍵.4、D【分析】根據軸對稱圖形、中心對稱圖形的定義即可判斷.【詳解】A、是軸對稱圖形,不符合題意;B、是中心對稱圖形,不符合題意;C、是軸對稱圖形,不符合題意;D、是軸對稱圖形,也是中心對稱圖形,故符合題意.故選:D.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念,軸對稱圖形:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形:在同一平面內,如果把一個圖形繞某一點旋轉180°,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.5、C【分析】根據角的正弦值與三角形邊的關系結合勾股定理即可求解.【詳解】∵在Rt△ABC中,∠C=90°,,,∴,設,則,∵,即,解得:,∴,故選:C.【點睛】本題考查了銳角三角函數的定義以及勾股定理,熟記銳角三角函數的定義是解題的關鍵.6、B【分析】根據第三象限角平分線上的點的特征是橫縱坐標相等進行解答.【詳解】因為,解得:,,當時,,不符合題意,應舍去.故選:B.【點睛】第三象限點的坐標特征是負負,第三象限角平分線上的點的特征是橫縱坐標相等,掌握其特征是解本題的關鍵.7、D【分析】根據題意可以寫出平移后的函數解析式,然后根據截x軸所得的線段長為4,可以求得a的值,本題得以解決.【詳解】解:二次函數y=ax2的圖象先向下平移2個單位,再向右平移3個單位之后的函數解析式為y=a(x﹣3)2﹣2,當y=0時,ax2﹣6ax+9a﹣2=0,設方程ax2﹣6ax+9a﹣2=0的兩個根為x1,x2,則x1+x2=6,x1x2=,∵平移后的函數截x軸所得的線段長為4,∴|x1﹣x2|=4,∴(x1﹣x2)2=16,∴(x1+x2)2﹣4x1x2=16,∴36﹣4×=16,解得,a=,故選:D.【點睛】本題考查解二次函數綜合題,解題關鍵是根據題意可以寫出平移后的函數解析式.8、B【分析】根據矩形的性質得對角線相等且互相平分,再結合三角函數的定義,逐個計算即可判斷.【詳解】解:∵四邊形ABCD是矩形,∴AC=BD,AO=CO,BO=DO,∠ADC=∠BCD=90°∴AO=CO=BO=DO,∴∠OCD=∠ODC=β,A、,故A選項正確;B、在Rt△ADC中,cos∠ACD=,∴cosβ=,∴AO=,故B選項錯誤;C、在Rt△BCD中,tan∠BDC=,∴tanβ=∴BC=atanβ,故C選項正確;D、在Rt△BCD中,cos∠BDC=,∴cosβ=∴,故D選項正確.故選:B.【點睛】本題考查矩形的性質及三角函數的定義,掌握三角函數的定義是解答此題的關鍵.9、B【分析】過點P作PH⊥AB于H,PD⊥x軸于D,交直線y=x于E,連結PA,根據切線的性質得PC⊥y軸,則P點的橫坐標為4,所以E點坐標為(4,4),易得△EOD和△PEH都是等腰直角三角形,根據垂徑定理由PH⊥AB得AH=,根據勾股定理可得PH=2,于是根據等腰直角三角形的性質得PE=,則PD=,然后利用第一象限點的坐標特征寫出P點坐標.【詳解】解:過點P作PH⊥AB于H,PD⊥x軸于D,交直線y=x于E,連結PA,
∵⊙P與y軸相切于點C,
∴PC⊥y軸,
∴P點的橫坐標為4,
∴E點坐標為(4,4),
∴△EOD和△PEH都是等腰直角三角形,
∵PH⊥AB,
∴AH=,
在△PAH中,PH=,
∴PE=,
∴PD=,
∴P點坐標為(4,).故選:B【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.也考查了垂徑定理.10、A【分析】根據題意可知,此題是不放回實驗,一共有12×11=132種情況,兩人的血型均為O型的有兩種可能性,從而可以求得相應的概率.【詳解】解:由題意可得,P(A)=,故選A.【點睛】本題考查列表法和樹狀圖法,解答本題的關鍵是明確題意,求出相應的概率.二、填空題(每小題3分,共24分)11、1【分析】根據垂徑定理求出BC,根據勾股定理求出OC即可.【詳解】解:∵OC⊥AB,OC過圓心O點,∴BC=AC=AB=×11=8,在Rt△OCB中,由勾股定理得:OC===1,故答案為:1.【點睛】此題考查勾股定理,垂徑定理的應用,由垂徑定理求出BC是解題的關鍵.12、點O在⊙P上【分析】由勾股定理等性質算出點與圓心的距離d,則d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內.【詳解】解:由勾股定理,得OP==5,d=r=5,故點O在⊙P上.故答案為點O在⊙P上.【點睛】此題考查點與圓的位置關系的判斷.解題關鍵在于要記住若半徑為r,點到圓心的距離為d,則有:當d>r時,點在圓外;當d=r時,點在圓上,當d<r時,點在圓內.13、16【分析】先證明,然后再根據相似三角形的性質求解即可.【詳解】∵AB⊥BC,CD⊥BC且∠AEB=∠DEC∴∴∴故本題答案為:16.【點睛】本題考查了相似三角形的應用,準確識圖,熟練掌握和靈活運用相似三角形的判定定理與性質定理是解題的關鍵.14、25【解析】試題解析:∵兩個相似三角形的相似比為2:5,∴面積的比是4:25,∵小三角形的面積為4,∴大三角形的面積為25.故答案為25.點睛:相似三角形的面積比等于相似比的平方.15、5.5【解析】試題分析:在△DEF和△DBC中,,∴△DEF∽△DBC,∴=,即=,解得BC=4,∵AC=1.5m,∴AB=AC+BC=1.5+4=5.5m考點:相似三角形16、1【分析】(1)根據,求出扇形弧長,即圓錐底面周長;(2)根據,即,求圓錐底面半徑.【詳解】該圓錐的底面半徑=故答案為:1.【點睛】圓錐的側面展開圖是扇形,解題關鍵是理解扇形弧長就是圓錐底面周長.17、11【詳解】∵,∴(x-2)(x-4)=1.∴x-2=1或x-4=1,即x1=2,x2=4.∵等腰△ABC的腰長與底邊長分別是方程的兩個根,∴當底邊長和腰長分別為2和4時,滿足三角形三邊關系,此時△ABC的周長為:2+4+4=11;當底邊長和腰長分別為4和2時,由于2+2=4,不滿足三角形三邊關系,△ABC不存在.∴△ABC的周長=11.故答案是:1118、1【分析】設兩個正六邊形的中心為O,連接OP,OB,過點O作OG⊥PM于點G,OH⊥AB于點H,如圖所示:很容易證出三角形PMN是一個等邊三角形,邊長PM的長,,而且面積等于小正六邊形的面積的,故三角形PMN的面積很容易被求出,根據正六邊形的性質及等腰三角形的三線和一可以得出PG的長,進而得出OG的長,,在Rt△OPG中,根據勾股定理得OP的長,設OB為x,,根據正六邊形的性質及等腰三角形的三線和一可以得出BH,OH的長,進而得出PH的長,在Rt△PHO中,根據勾股定理得關于x的方程,求解得出x的值,從而得出答案.【詳解】解:設兩個正六邊形的中心為O,連接OP,OB,過點O作OG⊥PM于點G,OH⊥AB于點H,如圖所示:很容易證出三角形PMN是一個等邊三角形,邊長PM=,而且面積等于小正六邊形的面積的,故三角形PMN的面積為cm2,∵OG⊥PM,且O是正六邊形的中心,∴PG=PM=∴OG=在Rt△OPG中,根據勾股定理得:OP2=OG2+PG2,即=OP2∴OP=7cm,設OB為x,∵OH⊥AB,且O是正六邊形的中心,∴BH=X,OH=,∴PH=5-x,在Rt△PHO中,根據勾股定理得OP2=PH2+OH2,即解得:x1=1,x2=-3(舍)故該圓的半徑為1cm.故答案為1.【點睛】本題以相機快門為背景,從中抽象出數學模型,綜合考查了多邊形、圓、三角形及解三角形等相關知識,突出考查數學的應用意識和解決問題的能力.試題通過將快門的光圈變化這個動態的實際問題化為靜態的數學問題,讓每個學生都能參與到實際問題數學化的過程中,鼓勵學生用數學的眼光觀察世界;在運用數學知識解決問題的過程中,關注思想方法,側重對問題的分析,將復雜的圖形轉化為三角形或四邊形解決,引導學生用數學的語言表達世界,用數學的思維解決問題.三、解答題(共66分)19、(1)(2,1);(2)n=﹣m2+2m;(3)1<b<8或0<b<1【分析】(1)當x=2時,y=1,即可確定點D的坐標;(2)根據拋物線的頂點坐標即可得n關于m的函數解析式;(3)根據拋物線開口向上,對稱軸方程,列出不等式組即可求解.【詳解】解:(1)當x=2時,y=1﹣2b+2b=1,∴無論b取何值,該拋物線都經過定點D.點D的坐標為(2,1);(2)拋物線y=x2﹣bx+2b=(x﹣)2+2b﹣所以拋物線的頂點坐標為(,2b﹣)∴n=2b﹣=﹣m2+2m.所以n關于m的函數解析式為:n=﹣m2+2m.(3)因為拋物線開口向上,對稱軸方程x=,根據題意,得2<<1或0<<2解得1<b<8或0<b<1.【點睛】本題考查二次函數的性質,關鍵在于牢記基礎性質.20、(1)見解析(2)AF=2【詳解】(1)證明:∵四邊形ABCD是平行四邊形∴AD∥BCAB∥CD∴∠ADF=∠CED∠B+∠C=180°∵∠AFE+∠AFD=,∠AFE=∠B∴∠AFD=∠C∴△ADF∽△DEC(2)解:∵四邊形ABCD是平行四邊形∴AD∥BCCD=AB=4又∵AE⊥BC∴AE⊥AD在Rt△ADE中,DE=∵△ADF∽△DEC∴∴∴AF=21、見解析【解析】試題分析:作BF∥AC交EC于F,通過證明△FBC≌△DBC,得到CD=CF,根據三角形中位線定理得到CF=CE,等量代換得到答案.試題解析:證明:作BF∥AC交EC于F.∵BF∥AC,∴∠FBC=∠ACB.∵AB=AC,∴∠ABC=∠ACB,∴∠FBC=∠ABC.∵BF∥AC,BE=AB,∴BF=AC,CF=CE.∵CD是AB邊上的中線,∴BD=AB,∴BF=BD.在△FBC和△DBC中,∵BF=BD,∠FBC=∠DBC,BC=BC,∴△FBC≌△DBC,∴CD=CF,∴CD=CE.點睛:本題考查的是三角形中位線定理、全等三角形的判定和性質以及等腰三角形的性質,正確作出輔助線、靈活運用定理是解題的關鍵.22、見解析【分析】列舉出所有情況,看他表演的節目不是同一類型的情況占總情況的多少即可.【詳解】法一:列表如下:ABCAAAABACBBABBBCCCACBCC法二:畫樹狀圖如下:畫樹狀圖或列表由上述樹狀圖或表格知:所有可能出現的結果共有9種其中不是同一類型有6種因此他表演的節目不是同一類型的概率是23、大樹的高度為(9+3)米【分析】根據矩形性質得出,再利用銳角三角函數的性質求出問題即可.【詳解】解:如圖,過點D作DG⊥BC于G,DH⊥CE于H,則四邊形DHCG為矩形.故DG=CH,CG=DH,在中,∵∠DAH=30°,AD=6米,∴DH=3米,AH=3米,∴CG=3米,設BC米,在中,∠BAC=45°,∴AC米,∴DG=(3+)米,BG=()米,在中,∵BG=DG·tan30°,∴(3)×,解得:9+3,∴BC=(9+3)米.答:大樹的高度為(9+3)米.【點睛】本題考查了仰角、坡角的定義,解直角三角形的應用,能借助仰角構造直角三角形,并結合圖形利用三角函數解直角三角形是解題的關鍵.24、(1)見解析;(2)見解析.【分析】(1)根據等腰三角形的性質可得,,從而得出,最后根據平行線的判定即可證出結論;(2)連接半徑,根據等腰三角形的性質可得,再根據平行線的性質可得,,從而得出,最后根據在同圓中,相等的圓心角所對的弦也相等即可證出結論.【詳解】證明:(1)∵,∴,∵,∴,∴,∴;(2)連接半徑,∴,∴,由(1)知,∴,,∴,∴,∴.【點睛】此題考查的是圓的基本性質、等腰三角形的性質和平行線的判定及性質,掌握在同圓中,相等的圓心角所對的弦也相等、等邊對等角和平行線的判定及性質是解決此題的關鍵.25、(1)A,C;(2);(3)1≤b≤或-≤b≤-1.【分析】(1)根據已知條件求出d的范圍:1≤d≤3,再將各點距離O點的距離,進行判斷是否在此范圍內即可,滿足條件的即為隨心點;(2)根據點E(4,3)是⊙O的“隨心點”,可根據,求出d=5,再求出r的范圍即可;(3)如圖a∥b∥c∥d,⊙O的半徑r=2,求出隨心點范圍,再分情況點N在y軸正半軸時,當點N在y軸負半軸時,分情況討論即可.【詳解】(1)∵⊙O的半徑r=2,
∴=3,=1∴1≤d≤3∵A(3,0),
∴OA=3,在范圍內
∴點A是⊙O的“隨心點”∵B(0,4)∴OB=4,而4>3,不在范圍內∴B是不是⊙O的“隨心點”,
∵C(,2),
∴OC=,在范圍內
∴點C是⊙O的“隨心點”,
∵D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司組織沖刺活動方案
- 公司生日座談會策劃方案
- 公司文體協會活動方案
- 2025年現代財務管理考試試題及答案
- 2025年生物醫學工程基礎知識與技術應用考試試卷及答案
- 2025年審判與執行實務考試試卷及答案
- 2025年科學傳播與社會認知的能力測試考試卷及答案
- 2025年臨床醫學專業執業醫師考試試卷及答案
- 滬教版(五四學制)(2024)六年級下冊英語期末復習Units1-2知識清單
- 2025年翻譯專業技術資格考試題及答案
- 第19章一次函數-一次函數專題數形結合一一次函數與45°角模型講義人教版數學八年級下冊
- 2023年四川省宜賓市敘州區數學六年級第二學期期末考試模擬試題含解析
- 幼兒園警察職業介紹課件
- 棉印染清潔生產審核報告
- 滅火器維修與報廢規程
- 皮膚病的臨床取材及送檢指南-修訂版
- 機型理論-4c172實用類重量平衡
- 校企合作項目立項申請表(模板)
- 管道工廠化預制推廣應用課件
- 海水的淡化精品課件
- 項目工程移交生產驗收報告
評論
0/150
提交評論