2022年江蘇省南菁高中學九年級數學第一學期期末考試試題含解析_第1頁
2022年江蘇省南菁高中學九年級數學第一學期期末考試試題含解析_第2頁
2022年江蘇省南菁高中學九年級數學第一學期期末考試試題含解析_第3頁
2022年江蘇省南菁高中學九年級數學第一學期期末考試試題含解析_第4頁
2022年江蘇省南菁高中學九年級數學第一學期期末考試試題含解析_第5頁
免費預覽已結束,剩余23頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每題4分,共48分)1.如圖,已知的內接正方形邊長為2,則的半徑是()A.1 B.2 C. D.2.若反比例函數y=的圖象經過點(2,﹣6),則k的值為()A.﹣12 B.12 C.﹣3 D.33.如圖,是的直徑,點,在上,若,則的度數為()A. B. C. D.4.如圖,在中,,D為AC上一點,連接BD,且,則DC長為()A.2 B. C. D.55.如圖,△ABC中,∠A=30°,點O是邊AB上一點,以點O為圓心,以OB為半徑作圓,⊙O恰好與AC相切于點D,連接BD.若BD平分∠ABC,AD=2,則線段CD的長是()A.2 B. C. D.6.一次會議上,每兩個參加會議的人都握了一次手,有人統(總)計一共握了次手,這次參加會議到會的人數是人,可列方程為:()A. B. C. D.7.“學雷鋒”活動月中,“飛翼”班將組織學生開展志愿者服務活動,小晴和小霞從“圖書館,博物館,科技館”三個場館中隨機選擇一個參加活動,兩人恰好選擇同一場館的概率是()A. B. C. D.8.拋物線y=x2+2x﹣3的最小值是()A.3B.﹣3C.4D.﹣49.如圖,點A、B、C、D、O都在方格紙的格點上,若△COD是由△AOB繞點O按逆時針方向旋轉而得,則旋轉的角度為()A.30° B.45°C.90° D.135°10.在同一直角坐標系中,一次函數與反比例函數的圖象大致是()A. B. C. D.11.對于二次函數的圖象,下列說法正確的是()A.開口向下 B.對稱軸 C.頂點坐標是 D.與軸有兩個交點12.按如圖所示的運算程序,輸入的的值為,那么輸出的的值為()A.1 B.2 C.3 D.4二、填空題(每題4分,共24分)13.閱讀下列材料,我們知道,因此將的分子分母同時乘以“”,分母就變成了4,即,從而可以達到對根式化簡的目的,根據上述閱讀材料解決問題:若,則代數式m5+2m4﹣2017m3+2016的值是_____.14.如圖,已知AB是半圓O的直徑,∠BAC=20°,D是弧AC上任意一點,則∠D的度數是_________.15.如圖,O為Rt△ABC斜邊中點,AB=10,BC=6,M、N在AC邊上,若△OMN∽△BOC,點M的對應點是O,則CM=______.16.如圖,為正五邊形的一條對角線,則∠=_____________.17.如圖,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,則CF=______.18.已知3a=4b≠0,那么=_____.三、解答題(共78分)19.(8分)如圖所示,雙曲線與直線(為常數)交于,兩點.(1)求雙曲線的表達式;(2)根據圖象觀察,當時,求的取值范圍;(3)求的面積.20.(8分)如圖,是的直徑,點在上,平分角交于,過作直線的垂線,交的延長線于,連接.(1)求證:;(2)求證:直線是的切線;(3)若,求的長.21.(8分)如圖,在平面直角坐標系中,已知Rt△AOB的兩直角邊OA、OB分別在x軸、y軸的正半軸上(OA<OB).且OA、OB的長分別是一元二次方程x2﹣14x+48=0的兩個根,線段AB的垂直平分線CD交AB于點C,交x軸于點D,點P是直線AB上一個動點,點Q是直線CD上一個動點.(1)求線段AB的長度:(2)過動點P作PF⊥OA于F,PE⊥OB于E,點P在移動過程中,線段EF的長度也在改變,請求出線段EF的最小值:(3)在坐標平面內是否存在一點M,使以點C、P、Q、M為頂點的四邊形是正方形,且該正方形的邊長為AB長?若存在,請直接寫出點M的坐標:若不存在,請說明理由.22.(10分)如圖,二次函數的圖像經過,兩點.(1)求該函數的解析式;(2)若該二次函數圖像與軸交于、兩點,求的面積;(3)若點在二次函數圖像的對稱軸上,當周長最短時,求點的坐標.23.(10分)函數與函數(、為不等于零的常數)的圖像有一個公共點,其中正比例函數的值隨的值增大而減小,求這兩個函數的解析式.24.(10分)如圖,BM是以AB為直徑的⊙O的切線,B為切點,BC平分∠ABM,弦CD交AB于點E,DE=OE.(1)求證:△ACB是等腰直角三角形;(2)求證:OA2=OE?DC:(3)求tan∠ACD的值.25.(12分)如圖1,若二次函數的圖像與軸交于點(-1,0)、,與軸交于點(0,4),連接、,且拋物線的對稱軸為直線.(1)求二次函數的解析式;(2)若點是拋物線在一象限內上方一動點,且點在對稱軸的右側,連接、,是否存在點,使?若存在,求出點的坐標;若不存在,說明理由;(3)如圖2,若點是拋物線上一動點,且滿足,請直接寫出點坐標.26.如圖,⊙O的直徑AB長為10,弦AC長為6,∠ACB的平分線交⊙O于D.(1)求BC的長;(2)連接AD和BD,判斷△ABD的形狀,說明理由.(3)求CD的長.

參考答案一、選擇題(每題4分,共48分)1、C【分析】如圖,連接BD,根據圓周角定理可得BD為⊙O的直徑,利用勾股定理求出BD的長,進而可得⊙O的半徑的長.【詳解】如圖,連接BD,∵四邊形ABCD是正方形,邊長為2,∴BC=CD=2,∠BCD=90°,∴BD==2,∵正方形ABCD是⊙O的內接四邊形,∴BD是⊙O的直徑,∴⊙O的半徑是=,故選:C.【點睛】本題考查正方形的性質、圓周角定理及勾股定理,根據圓周角定理得出BD是直徑是解題關鍵.2、A【解析】試題分析:∵反比例函數的圖象經過點(2,﹣6),∴,解得k=﹣1.故選A.考點:反比例函數圖象上點的坐標特征.3、C【分析】先根據圓周角定理求出∠ACD的度數,再由直角三角形的性質可得出結論.【詳解】∵,∴∠ABD=∠ACD=40°,∵AB是⊙O的直徑,

∴∠ACB=90°.

∴∠BCD=∠ACB-∠ACD=90°-40°=50°.

故選:C.【點睛】本題考查的是圓周角定理,熟知直徑所對的圓周角是直角是解答此題的關鍵.4、C【分析】利用等腰三角形的性質得出∠ABC=∠C=∠BDC,可判定△ABC∽△BCD,利用相似三角形對應邊成比例即可求出DC的長.【詳解】∵AB=AC=6∴∠ABC=∠C∵BD=BC=4∴∠C=∠BDC∴∠ABC=∠BCD,∠ACB=∠BDC∴△ABC∽△BCD∴∴故選C.【點睛】本題考查了等腰三角形的性質,相似三角形的判定與性質,解題的關鍵是找到兩組對應角相等判定相似三角形.5、B【分析】連接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的長;由BD平分∠ABC,OB=OD可得OD與BC間的位置關系,根據平行線分線段成比例定理,得結論.【詳解】連接OD∵OD是⊙O的半徑,AC是⊙O的切線,點D是切點,∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥CB,∴,即,∴CD=.故選B.【點睛】本題考查了圓的切線的性質、含30°角的直角三角形的性質及平行線分線段成比例定理,解決本題亦可說明∠C=90°,利用∠A=30°,AB=6,先得AC的長,再求CD.遇切點連圓心得直角,是通常添加的輔助線.6、B【分析】設這次會議到會人數為x,根據每兩個參加會議的人都相互握了一次手且整場會議一共握了45次手,即可得出關于x的一元二次方程,此題得解.【詳解】解:設這次會議到會人數為x,

依題意,得:.

故選:B.【點睛】本題考查了由實際問題抽象出一元二次方程,找準等量關系,正確列出一元二次方程是解題的關鍵.7、A【分析】畫樹狀圖(用、、分別表示“圖書館、博物館、科技館”三個場館)展示所有9種等可能的結果數,找出兩人恰好選擇同一場館的結果數,然后根據概率公式求解.【詳解】畫樹狀圖為:(用分別表示“圖書館,博物館,科技館”三個場館)共有9種等可能的結果數,其中兩人恰好選擇同一場館的結果數為3,所以兩人恰好選擇同一場館的概率.故選A.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果,再從中選出符合事件或的結果數目,然后利用概率公式計算事件或事件的概率.8、D【解析】把y=x2+2x﹣3配方變成頂點式,求出頂點坐標即可得拋物線的最小值.【詳解】∵y=x2+2x﹣3=(x+1)2﹣1,∴頂點坐標為(﹣1,﹣1),∵a=1>0,∴開口向上,有最低點,有最小值為﹣1.故選:D.【點睛】本題考查二次函數最值的求法:求二次函數的最大(小)值有三種方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,熟練掌握并靈活運用適當方法是解題關鍵.9、C【分析】根據勾股定理求解.【詳解】設小方格的邊長為1,得,OC=,AO=,AC=4,∵OC2+AO2==16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故選C.【點睛】考點:勾股定理逆定理.10、C【分析】由于本題不確定k的符號,所以應分k>0和k<0兩種情況分類討論,針對每種情況分別畫出相應的圖象,然后與各選擇比較,從而確定答案.【詳解】(1)當k>0時,一次函數y=kx-k

經過一、三、四象限,反比例函數經過一、三象限,如圖所示:(2)當k<0時,一次函數y=kx-k經過一、二、四象限,反比例函數經過二、四象限.如圖所示:故選:C.【點睛】本題考查了反比例函數、一次函數的圖象.靈活掌握反比例函數的圖象性質和一次函數的圖象性質是解決問題的關鍵,在思想方法方面,本題考查了數形結合思想、分類討論思想.11、C【分析】根據拋物線的性質由a=2得到圖象開口向上,再根據頂點式得到頂點坐標,再根據對稱軸為直線x=1和開口方向和頂點,從而可判斷拋物線與x軸的公共點個數.【詳解】解:二次函數y=2(x-1)2+2的圖象開口向上,頂點坐標為(1,2),對稱軸為直線x=1,拋物線與x軸沒有公共點.

故選:C.【點睛】本題主要考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x-h)2+k中,其頂點坐標為(h,k),對稱軸為x=h.當a>0時,拋物線開口向上,當a<0時,拋物線開口向下.12、D【分析】把代入程序中計算,知道滿足條件,即可確定輸出的結果.【詳解】把代入程序,∵是分數,∴不滿足輸出條件,進行下一輪計算;把代入程序,∵不是分數∴滿足輸出條件,輸出結果y=4,故選D.【點睛】本題考查程序運算,解題的關鍵是讀懂程序的運算規則.二、填空題(每題4分,共24分)13、2016【分析】首先對m這個式子進行分母有理化,然后觀察要求值的代數式進行拆分代入運算即可.【詳解】∵===,∴m+1=,∴,∴,∴原式==2016.故答案為:2016.【點睛】本題考查了二次根式的分母有理化,代數式的求值,觀察代數式的特點拆分代入是解題的關鍵.14、110°【解析】試題解析:∵AB是半圓O的直徑故答案為點睛:圓內接四邊形的對角互補.15、【分析】根據直角三角形斜邊中線的性質可得OC=OA=OB=AB,根據等腰三角形的性質可得∠A=∠OCA,∠OCB=∠B,由相似三角形的性質可得∠ONC=∠OCB,,可得OM=MN,利用等量代換可得∠ONC=∠B,即可證明△CNO∽△ABC,利用外角性質可得∠ACO=∠MOC,可得OM=CM,即可證明CM=CN,利用勾股定理可求出AC的長,根據相似三角形的性質即可求出CN的長,即可求出CM的長.【詳解】∵O為Rt△ABC斜邊中點,AB=10,BC=6,∴OC=OA=OB=AB=5,AC==8,∴∠A=∠OCA,∠OCB=∠B,∵△OMN∽△BOC,∴∠ONC=∠OCB,,∠COB=∠OMN,∴MN=OM,∠ONC=∠B,∴△CNO∽△ABC,∴,即,解得:CN=,∵∠OMN=∠OCM+∠MOC,∠COB=∠A+∠OCA,∴∠OCM=∠MOC,∴OM=CM,∴CM=MN=CN=.故答案為:【點睛】本題考查直角三角形斜邊中線的性質、等腰三角形的性質及相似三角形的判定與性質,直角三角形斜邊中線等于斜邊的一半;熟練掌握相似三角形的判定定理是解題關鍵.16、36°【解析】360°÷5=72°,180°-72°=108°,所以,正五邊形每個內角的度數為108°,即可知∠A=108°,又知△ABE是等腰三角形,則∠ABE=(180°-108°)=36°.17、【解析】試題分析:證△AEF≌△ADF,推出AE=AD=5,EF=DF,在△ABE中,由勾股定理求出BE=3,求出CE=2,設CF=x,則EF=DF=4-x,在Rt△CFE中,由勾股定理得出方程(4-x)2=x2+22,求出x即可.試題解析:∵AF平分∠DAE,∴∠DAF=∠EAF,∵四邊形ABCD是矩形,∴∠D=∠C=90°,AD=BC=5,AB=CD=4,∵EF⊥AE,∴∠AEF=∠D=90°,在△AEF和△ADF中,,∴△AEF≌△ADF(AAS),∴AE=AD=5,EF=DF,在△ABE中,∠B=90°,AE=5,AB=4,由勾股定理得:BE=3,∴CE=5-3=2,設CF=x,則EF=DF=4-x,在Rt△CFE中,由勾股定理得:EF2=CE2+CF2,∴(4-x)2=x2+22,x=,CF=.考點:矩形的性質.18、.【分析】根據等式的基本性質將等式兩邊都除以3b,即可求出結論.【詳解】解:兩邊都除以3b,得=,故答案為:.【點睛】此題考查的是等式的基本性質,掌握等式的基本性質是解決此題的關鍵.三、解答題(共78分)19、(1);(2)或;(3)6.【分析】(1)把點A坐標代入反比例函數解析式即可求得k的值;(2)根據點B在雙曲線上可求出a的值,再結合圖象確定雙曲線在直線上方的部分對應的x的值即可;(3)先利用待定系數法求出一次函數的解析式,再用如圖的△AOC的面積減去△BOC的面積即可求出結果.【詳解】解(1):雙曲線經過,∴,∴雙曲線的解析式為.(2)∵雙曲線經過點,∴,解得,∴,根據圖象觀察,當時,的取值范圍是或.(3)設直線的解析式為,∴,解得,∴直線的解析式為,∴直線與軸的交點,∴.【點睛】本題是反比例函數與一次函數的綜合題,重點考查了待定系數法求函數的解析式、一次函數與反比例函數的交點問題和三角形的面積計算,屬于中檔題型,熟練掌握一次函數與反比例函數的基本知識是解題的關鍵.20、(1)見解析;(2)見解析;(3).【分析】(1)根據在同圓中,相等的圓周角所對的弦也相等即可證明;(2)連接半徑,根據等邊對等角和等量代換即可證出∠ODE=90°,根據切線的判定定理即可得出結論;(3)作于,根據角平分線的性質可得,然后利用勾股定理依次求出OF和AD即可.【詳解】證明:(1)∵在中,平分角,∴,∴;(2)如圖,連接半徑,有,∴,∵于,∴,由(1)知,∴,即,∴∠ODE=90°∴是的切線.(3)如圖,連接OD,作于,則,半徑,在中,∴在中,【點睛】此題考查的是圓的基本性質、切線的判定、角平分線的性質和勾股定理,掌握在同圓中,相等的圓周角所對的弦也相等、切線的判定定理、角平分線的性質和用勾股定理解直角三角形是解決此題的關鍵.21、(1)1;(2);(3)存在,所求點M的坐標為M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【分析】(1)利用因式分解法解方程x2﹣14x+48=0,求出x的值,可得到A、B兩點的坐標,在Rt△AOB中利用勾股定理求出AB即可.(2)證明四邊形PEOF是矩形,推出EF=OP,根據垂線段最短解決問題即可.(3)分兩種情況進行討論:①當點P與點B重合時,先求出BM的解析式為y=x+8,設M(x,x+8),再根據BM=5列出方程(x+8﹣8)2+x2=52,解方程即可求出M的坐標;②當點P與點A重合時,先求出AM的解析式為y=x﹣,設M(x,x﹣),再根據AM=5列出方程(x﹣)2+(x﹣6)2=52,解方程即可求出M的坐標.【詳解】解:(1)解方程x2﹣14x+48=0,得x1=6,x2=8,∵OA<OB,∴A(6,0),B(0,8);在Rt△AOB中,∵∠AOB=90°,OA=6,OB=8,∴AB===1.(2)如圖,連接OP.∵PE⊥OB,PF⊥OA,∴∠PEO=∠EOF=∠PFO=90°,∴四邊形PEOF是矩形,∴EF=OP,根據垂線段最短可知當OP⊥AB時,OP的值最小,此時OP==,∴EF的最小值為.(3)在坐標平面內存在點M,使以點C、P、Q、M為頂點的四邊形是正方形,且該正方形的邊長為AB長.∵AC=BC=AB=5,∴以點C、P、Q、M為頂點的正方形的邊長為5,且點P與點B或點A重合.分兩種情況:①當點P與點B重合時,易求BM的解析式為y=x+8,設M(x,x+8),∵B(0,8),BM=5,∴(x+8﹣8)2+x2=52,化簡整理,得x2=16,解得x=±4,∴M1(4,11),M2(﹣4,5);②當點P與點A重合時,易求AM的解析式為y=x﹣,設M(x,x﹣),∵A(6,0),AM=5,∴(x﹣)2+(x﹣6)2=52,化簡整理,得x2﹣12x+20=0,解得x1=2,x2=1,∴M3(2,﹣3),M4(1,3);綜上所述,所求點M的坐標為M1(4,11),M2(﹣4,5),M3(2,﹣3),M4(1,3).【點睛】本題是一次函數的綜合題型,其中涉及到的知識點有運用待定系數法求一次函數的解析式,一元二次方程的解法,正方形的性質,綜合性較強,難度適中.運用數形結合、分類討論及方程思想是解題的關鍵.22、(1);(2)6;(3)【解析】(1)將M,N兩點代入求出b,c值,即可確定表達式;(2)令y=0求x的值,即可確定A、B兩點的坐標,求線段AB長,由三角形面積公式求解.(3)求出拋物線的對稱軸,確定M關于對稱軸的對稱點G的坐標,直線NG與對稱軸的交點即為所求P點,利用一次函數求出P點坐標.【詳解】解:將點,代入中得,,解得,,∴y與x之間的函數關系式為;(2)如圖,當y=0時,,∴x1=3,x2=-1,∴A(-1,0),B(3,0),∴AB=4,∴S△ABM=.即的面積是6.(3)如圖,拋物線的對稱軸為直線,點關于直線x=1的對稱點坐標為G(2,3),∴PM=PG,連MG交拋物線對稱軸于點P,此時NP+PM=NP+PG最小,即周長最短.設直線NG的表達式為y=mx+n,將N(-2,-5),G(2,3)代入得,,解得,,∴y=2m-1,∴P點坐標為(1,1).【點睛】本題考查拋物線與圖形的綜合題,涉及待定系數法求解析式,圖象的交點問題,利用對稱性解決線段和的最小值問題,利用函數觀點解決圖形問題是解答此題的關鍵.如圖,二次函數y=-x2+bx+c的圖像經過M(0,3),N(-2,-5)兩點.23、,【分析】把點A(3,k-2)代入,即可得出=k?2,據此求出k的值,再根據正比例函數y的值隨x的值增大而減小,得出滿足條件的k值即可求解.【詳解】根據題意可得

=k?2,

整理得k2-2k+3=0,

解得k1=-1,k2=3,

∵正比例函數y的值隨x的值增大而減小,

∴k=-1,

∴點A的坐標為(3,-3),

∴反比例函數是解析式為:y=?;

正比例函數的解析式為:y=-x.【點睛】此題考查反比例函數與一次函數的交點問題,解題關鍵在于將函數圖象的交點與方程(組)的解結合起來是解此類題目常用的方法.24、(1)證明見解析;(2)證明見解析;(3)tan∠ACD=2﹣.【分析】(1)根據BM為切線,BC平分∠ABM,求得∠ABC的度數,再由直徑所對的圓周角為直角,即可求證;(2)根據三角形相似的判定定理證明三角形相似,再由相似三角形對應邊成比例,即可求證;(3)由圖得到∠ACD=∠ABD,根據各個角之間的關系求出∠AFD的度數,用AD表達出其它邊的邊長,再代入正切公式即可求得.【詳解】(1)∵BM是以AB為直徑的⊙O的切線,∴∠ABM=90°,∵BC平分∠ABM,∴∠ABC=∠ABM=45°∵AB是直徑∴∠ACB=90°,∴∠CAB=∠CBA=45°∴AC=BC∴△ACB是等腰直角三角形;(2)如圖,連接OD,OC∵DE=EO,DO=CO∴∠EDO=∠EOD,∠EDO=∠OCD∴∠EDO=∠EDO,∠EOD=∠OCD∴△EDO∽△ODC∴∴OD2=DEDC∴OA2=DEDC=EODC(3)如圖,連接BD,AD,DO,作∠BAF=∠DBA,交BD于點F,∵DO=BO∴∠ODB=∠OBD,∴∠AOD=2∠ODB=∠EDO,∵∠CAB=∠CDB=45°=∠EDO+∠ODB=3∠ODB,∴∠ODB=15°=∠OBD∵∠BAF=∠DBA=15°∴AF=BF,∠AFD=30°∵AB是直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論