



版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023屆浙江省寧波市鎮海區重點達標名校十校聯考最后數學測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是根據我市某天七個整點時的氣溫繪制成的統計圖,則這七個整點時氣溫的中位數和平均數分別是()A.30,28B.26,26C.31,30D.26,222.將拋物線y=-2xA.y=-2(x+1)2C.y=-2(x-1)23.如圖,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分線,DE⊥AB,垂足為點E,DE=1,則BC=()A. B.2 C.3 D.+24.如圖,菱形中,對角線AC、BD交于點O,E為AD邊中點,菱形ABCD的周長為28,則OE的長等于()A.3.5 B.4 C.7 D.145.下列左圖表示一個由相同小立方塊搭成的幾何體的俯視圖,小正方形中的數字表示該位置上小立方塊的個數,則該幾何體的主視圖為()A. B. C. D.6.我們知道:四邊形具有不穩定性.如圖,在平面直角坐標系中,邊長為4的正方形ABCD的邊AB在x軸上,AB的中點是坐標原點O,固定點A,B,把正方形沿箭頭方向推,使點D落在y軸正半軸上點D′處,則點C的對應點C′的坐標為()A.(,2) B.(4,1) C.(4,) D.(4,)7.如圖,動點P從(0,3)出發,沿所示方向運動,每當碰到矩形的邊時反彈,反彈時反射角等于入射角.當點P第2018次碰到矩形的邊時,點P的坐標為()A.(1,4) B.(7,4) C.(6,4) D.(8,3)8.的倒數是()A. B.3 C. D.9.在數軸上到原點距離等于3的數是()A.3 B.﹣3 C.3或﹣3 D.不知道10.如圖,已知第一象限內的點A在反比例函數y=2x上,第二象限的點B在反比例函數y=kxA.﹣22 B.4 C.﹣4 D.2211.如圖,在平行四邊形ABCD中,AE:EB=1:2,E為AB上一點,AC與DE相交于點F,S△AEF=3,則S△FCD為()A.6 B.9 C.12 D.2712.函數y=中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.反比例函數y=的圖像經過點(2,4),則k的值等于__________.14.關于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數根,則m的取值范圍是_____.15.如圖,已知直線,直線m、n與a、b、c分別交于點A、C、E和B、D、F,如果,,,那么______.16.不透明袋子中裝有個球,其中有個紅球、個綠球和個黑球,這些球除顏色外無其他差別.從袋子中隨機取出個球,則它是黑球的概率是_____.17.分解因式:3a2﹣12=___.18.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在四邊形ABCD中,點E是對角線BD上的一點,EA⊥AB,EC⊥BC,且EA=EC.求證:AD=CD.20.(6分)2013年6月,某中學結合廣西中小學閱讀素養評估活動,以“我最喜愛的書籍”為主題,對學生最喜愛的一種書籍類型進行隨機抽樣調查,收集整理數據后,繪制出以下兩幅未完成的統計圖,請根據圖1和圖2提供的信息,解答下列問題:在這次抽樣調查中,一共調查了多少名學生?請把折線統計圖(圖1)補充完整;求出扇形統計圖(圖2)中,體育部分所對應的圓心角的度數;如果這所中學共有學生1800名,那么請你估計最喜愛科普類書籍的學生人數.21.(6分)解方程組22.(8分)某同學報名參加學校秋季運動會,有以下5個項目可供選擇:徑賽項目:100m、200m、1000m(分別用A1、A2、A3表示);田賽項目:跳遠,跳高(分別用T1、T2表示).該同學從5個項目中任選一個,恰好是田賽項目的概率P為;該同學從5個項目中任選兩個,求恰好是一個徑賽項目和一個田賽項目的概率P1,利用列表法或樹狀圖加以說明;該同學從5個項目中任選兩個,則兩個項目都是徑賽項目的概率P2為.23.(8分)水果店老板用600元購進一批水果,很快售完;老板又用1250元購進第二批水果,所購件數是第一批的2倍,但進價比第一批每件多了5元,問第一批水果每件進價多少元?24.(10分)問題提出(1)如圖1,正方形ABCD的對角線交于點O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點P為弧CD上一動點,求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農村的主要建筑,窯洞賓館更是一道靚麗的風景線,是因為窯洞除了它的堅固性及特有的外在美之外,還具有冬暖夏涼的天然優點家住延安農村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發現自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高MN=1.2m(N為AD的中點,MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認為誰的說法正確?請通過計算求出門角B到門窗弓形弧AD的最大距離.25.(10分)為了解某校初二學生每周上網的時間,兩位學生進行了抽樣調查.小麗調查了初二電腦愛好者中40名學生每周上網的時間;小杰從全校400名初二學生中隨機抽取了40名學生,調查了每周上網的時間.小麗與小杰整理各自樣本數據,如下表所示.時間段(小時/周)小麗抽樣(人數)小杰抽樣(人數)0~16221~210102~31663~482(1)你認為哪位學生抽取的樣本不合理?請說明理由.專家建議每周上網2小時以上(含2小時)的學生應適當減少上網的時間,估計該校全體初二學生中有多少名學生應適當減少上網的時間.26.(12分)先化簡,再求值:,且x為滿足﹣3<x<2的整數.27.(12分)按要求化簡:(a﹣1)÷,并選擇你喜歡的整數a,b代入求值.小聰計算這一題的過程如下:解:原式=(a﹣1)÷…①=(a﹣1)?…②=…③當a=1,b=1時,原式=…④以上過程有兩處關鍵性錯誤,第一次出錯在第_____步(填序號),原因:_____;還有第_____步出錯(填序號),原因:_____.請你寫出此題的正確解答過程.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B.【答案解析】測試卷分析:由圖可知,把7個數據從小到大排列為22,22,23,1,28,30,31,中位數是第4位數,第4位是1,所以中位數是1.平均數是(22×2+23+1+28+30+31)÷7=1,所以平均數是1.故選B.考點:中位數;加權平均數.2、C【答案解析】測試卷分析:∵拋物線y=-2x2+1向右平移1個單位長度,∴平移后解析式為:y=-2考點:二次函數圖象與幾何變換.3、C【答案解析】測試卷分析:根據角平分線的性質可得CD=DE=1,根據Rt△ADE可得AD=2DE=2,根據題意可得△ADB為等腰三角形,則DE為AB的中垂線,則BD=AD=2,則BC=CD+BD=1+2=1.考點:角平分線的性質和中垂線的性質.4、A【答案解析】
根據菱形的四條邊都相等求出AB,再根據菱形的對角線互相平分可得OB=OD,然后判斷出OE是△ABD的中位線,再根據三角形的中位線平行于第三邊并且等于第三邊的一半求解即可.【題目詳解】解:∵菱形ABCD的周長為28,∴AB=28÷4=7,OB=OD,∵E為AD邊中點,∴OE是△ABD的中位線,∴OE=AB=×7=3.1.故選:A.【答案點睛】本題考查了菱形的性質,三角形的中位線平行于第三邊并且等于第三邊的一半,熟記性質與定理是解題的關鍵.5、B【答案解析】
由俯視圖所標該位置上小立方塊的個數可知,左側一列有2層,右側一列有1層.【題目詳解】根據俯視圖中的每個數字是該位置小立方塊的個數,得出主視圖有2列,從左到右的列數分別是2,1.故選B.【答案點睛】此題考查了三視圖判斷幾何體,用到的知識點是俯視圖、主視圖,關鍵是根據三種視圖之間的關系以及視圖和實物之間的關系.6、D【答案解析】
由已知條件得到AD′=AD=4,AO=AB=2,根據勾股定理得到OD′==2,于是得到結論.【題目詳解】解:∵AD′=AD=4,
AO=AB=1,
∴OD′==2,
∵C′D′=4,C′D′∥AB,
∴C′(4,2),故選:D.【答案點睛】本題考查正方形的性質,坐標與圖形的性質,勾股定理,正確的識別圖形是解題關鍵.7、B【答案解析】如圖,經過6次反彈后動點回到出發點(0,3),∵2018÷6=336…2,∴當點P第2018次碰到矩形的邊時為第336個循環組的第2次反彈,點P的坐標為(7,4).故選C.8、A【答案解析】
解:的倒數是.故選A.【答案點睛】本題考查倒數,掌握概念正確計算是解題關鍵.9、C【答案解析】
根據數軸上到原點距離等于3的數為絕對值是3的數即可求解.【題目詳解】絕對值為3的數有3,-3.故答案為C.【答案點睛】本題考查數軸上距離的意義,解題的關鍵是知道數軸上的點到原點的距離為絕對值.10、C【答案解析】測試卷分析:作AC⊥x軸于點C,作BD⊥x軸于點D.則∠BDO=∠ACO=90°,則∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴SΔOBDSΔAOC又∵S△AOC=12×2=1,∴S△OBD故選C.考點:1.相似三角形的判定與性質;2.反比例函數圖象上點的坐標特征.11、D【答案解析】
先根據AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性質即可得出結論.【題目詳解】解:∵四邊形ABCD是平行四邊形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴==()2,解得S△FCD=1.故選D.【答案點睛】本題考查的是相似三角形的判定與性質,熟知相似三角形面積的比等于相似比的平方是解答此題的關鍵.12、D【答案解析】測試卷分析:由分式有意義的條件得出x+1≠0,解得x≠﹣1.故選D.點睛:本題考查了函數中自變量的取值范圍、分式有意義的條件;由分式有意義得出不等式是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【答案解析】解:∵點(2,4)在反比例函數的圖象上,∴,即k=1.故答案為1.點睛:本題考查的是反比例函數圖象上點的坐標特點,即反比例函數圖象上各點的坐標一定適合此函數的解析式.14、m≤1【答案解析】
根據一元二次方程有實數根,得出△≥0,建立關于m的不等式,求出m的取值范圍即可.【題目詳解】解:由題意知,△=4﹣4(m﹣1)≥0,∴m≤1,故答案為:m≤1.【答案點睛】此題考查了根的判別式,掌握一元二次方程根的情況與判別式△的關系:△>0,方程有兩個不相等的實數根;△=0,方程有兩個相等的實數根;△<0,方程沒有實數根是本題的關鍵.15、【答案解析】
由直線a∥b∥c,根據平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4,即可求得BD的長.【題目詳解】解:由直線a∥b∥c,根據平行線分線段成比例定理,即可得,又由AC=3,CE=5,DF=4可得:解得:BD=.故答案為.【答案點睛】此題考查了平行線分線段成比例定理.題目比較簡單,解題的關鍵是注意數形結合思想的應用.16、【答案解析】
一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.根據隨機事件概率大小的求法,找準兩點:①符合條件的情況數目,②全部情況的總數,二者的比值就是其發生的概率的大小.【題目詳解】∵不透明袋子中裝有7個球,其中有2個紅球、2個綠球和3個黑球,∴從袋子中隨機取出1個球,則它是黑球的概率是:故答案為:.【答案點睛】本題主要考查概率的求法與運用,解決本題的關鍵是要熟練掌握概率的定義和求概率的公式.17、3(a+2)(a﹣2)【答案解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續分解因式.因此,3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).18、120°【答案解析】
設扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【題目詳解】設扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°【答案點睛】本題考查扇形的面積的計算,弧長公式等知識,解題的關鍵是掌握基本知識.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、證明見解析【答案解析】
根據垂直的定義和直角三角形的全等判定,再利用全等三角形的性質解答即可.【題目詳解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB與Rt△ECB中,∴Rt△EAB≌Rt△ECB,∴AB=CB,∠ABE=∠CBE,∵BD=BD,在△ABD與△CBD中,∴△ABD≌△CBD,∴AD=CD.【答案點睛】本題考查了全等三角形的判定及性質,根據垂直的定義和直角三角形的全等判定是解題的關鍵.20、(1)一共調查了300名學生.(2)(3)體育部分所對應的圓心角的度數為48°.(4)1800名學生中估計最喜愛科普類書籍的學生人數為1.【答案解析】
(1)用文學的人數除以所占的百分比計算即可得解.(2)根據所占的百分比求出藝術和其它的人數,然后補全折線圖即可.(3)用體育所占的百分比乘以360°,計算即可得解.(4)用總人數乘以科普所占的百分比,計算即可得解.【題目詳解】解:(1)∵90÷30%=300(名),∴一共調查了300名學生.(2)藝術的人數:300×20%=60名,其它的人數:300×10%=30名.補全折線圖如下:(3)體育部分所對應的圓心角的度數為:×360°=48°.(4)∵1800×=1(名),∴1800名學生中估計最喜愛科普類書籍的學生人數為1.21、【答案解析】
將②×3,再聯立①②消未知數即可計算.【題目詳解】解:②得:③①+③得:把代入③得∴方程組的解為【答案點睛】本題考查二元一次方程組解法,關鍵是掌握消元法.22、(1);(1);(3);【答案解析】
(1)直接根據概率公式求解;(1)先畫樹狀圖展示所有10種等可能的結果數,再找出一個徑賽項目和一個田賽項目的結果數,然后根據概率公式計算一個徑賽項目和一個田賽項目的概率P1;(3)找出兩個項目都是徑賽項目的結果數,然后根據概率公式計算兩個項目都是徑賽項目的概率P1.【題目詳解】解:(1)該同學從5個項目中任選一個,恰好是田賽項目的概率P=;(1)畫樹狀圖為:共有10種等可能的結果數,其中一個徑賽項目和一個田賽項目的結果數為11,所以一個徑賽項目和一個田賽項目的概率P1==;(3)兩個項目都是徑賽項目的結果數為6,所以兩個項目都是徑賽項目的概率P1==.故答案為.考點:列表法與樹狀圖法.23、120【答案解析】
設第一批水果每件進價為x元,則第二批水果每件進價為(x+5)元,根據用1250元所購件數是第一批的2倍,列方程求解.【題目詳解】解:設第一批水果每件進價為x元,則第二批水果每件進價為(x+5)元,由題意得,×2=,解得:x=120,經檢驗:x=120是原分式方程的解,且符合題意.答:第一批水果每件進價為120元.【答案點睛】本題考查了分式方程的應用,解題的關鍵是熟練的掌握分式方程的應用.24、(1);(2);(2)小貝的說法正確,理由見解析,.【答案解析】
(1)連接AC,BD,由OE垂直平分DC可得DH長,易知OH、HE長,相加即可;(2)補全⊙O,連接AO并延長交⊙O右半側于點P,則此時A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長,易求AP長;(1)小貝的說法正確,補全弓形弧AD所在的⊙O,連接ON,OA,OD,過點O作OE⊥AB于點E,連接BO并延長交⊙O上端于點P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長,易知BP長.【題目詳解】解:(1)如圖1,連接AC,BD,對角線交點為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如圖2,補全⊙O,連接AO并延長交⊙O右半側于點P,則此時A、P之間的距離最大,在Rt△AOD中,AD=6,DO=1,∴AO1,∴AP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設備維修工作計劃(7篇)
- 計算機輔助設計繪圖員:CAD初級考試考試試題一
- 財務會計實訓總結范文10篇-財務工作總結
- 部編版二年級上冊第七單元《古詩二首(夜宿山寺等)》教案
- 建筑施工特種作業-建筑起重機械安裝拆卸工(物料提升機)真題庫-5
- 建筑施工特種作業-建筑架子工(普通腳手架)真題庫-8
- 1 2 常用邏輯用語-2026版53高考數學總復習A版精煉
- 2023-2024學年福建省莆田市高二下學期期末質量監測數學試卷(解析版)
- 高中數學競賽(預賽)訓練試題+數學競賽初賽試題(含答案)
- 應聘酒水公司簡歷
- 2025年上海市版個人房屋租賃合同
- 數據的生命周期管理流程試題及答案
- 2025江蘇蘇州工業園區蘇相合作區國企業招聘5人易考易錯模擬試題(共500題)試卷后附參考答案
- T/CECS 10359-2024生物安全實驗室生命支持系統
- T/CSBME 058-2022持續葡萄糖監測系統
- 吊車吊籃施工方案大全
- 2025年中考英語考前沖刺卷(北京卷)(解析版)
- 2025年物業安全管理專家考試試題及答案
- 2025年醫保知識考試題庫及答案(醫保政策宣傳與解讀)綜合測試
- “臨床營養科建設與管理指南”實施細則-I級標準化臨床營養科建設示范基地
- 結直腸癌分子病理檢測臨床實踐指南(2025版)解讀
評論
0/150
提交評論