南京市建鄴區重點名校2022年中考數學考前最后一卷含解析_第1頁
南京市建鄴區重點名校2022年中考數學考前最后一卷含解析_第2頁
南京市建鄴區重點名校2022年中考數學考前最后一卷含解析_第3頁
南京市建鄴區重點名校2022年中考數學考前最后一卷含解析_第4頁
南京市建鄴區重點名校2022年中考數學考前最后一卷含解析_第5頁
免費預覽已結束,剩余21頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,矩形ABOC的頂點A的坐標為(﹣4,5),D是OB的中點,E是OC上的一點,當△ADE的周長最小時,點E的坐標是()A.(0,) B.(0,) C.(0,2) D.(0,)2.若(x﹣1)0=1成立,則x的取值范圍是()A.x=﹣1 B.x=1 C.x≠0 D.x≠13.如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于點E,則陰影部分面積為()A.π B.π C.6﹣π D.2﹣π4.在2014年5月崇左市教育局舉行的“經典詩朗誦”演講比賽中,有11名學生參加決賽,他們決賽的成績各不相同,其中的一名學生想知道自己能否進入前6名,不僅要了解自己的成績,還要了解這11名學生成績的()A.眾數 B.中位數 C.平均數 D.方差5.如圖,在正方形ABCD中,AB=9,點E在CD邊上,且DE=2CE,點P是對角線AC上的一個動點,則PE+PD的最小值是()A. B. C.9 D.6.下列實數中,在2和3之間的是()A. B. C. D.7.下列各式計算正確的是()A.a2+2a3=3a5 B.a?a2=a3 C.a6÷a2=a3 D.(a2)3=a58.-5的倒數是A. B.5 C.- D.-59.下列說法中,正確的個數共有()(1)一個三角形只有一個外接圓;(2)圓既是軸對稱圖形,又是中心對稱圖形;(3)在同圓中,相等的圓心角所對的弧相等;(4)三角形的內心到該三角形三個頂點距離相等;A.1個B.2個C.3個D.4個10.隨機擲一枚均勻的硬幣兩次,至少有一次正面朝上的概率為()A. B. C. D.11.如圖,不等式組的解集在數軸上表示正確的是()A. B.C. D.12.下列哪一個是假命題()A.五邊形外角和為360°B.切線垂直于經過切點的半徑C.(3,﹣2)關于y軸的對稱點為(﹣3,2)D.拋物線y=x2﹣4x+2017對稱軸為直線x=2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,為了測量鐵塔AB高度,在離鐵塔底部(點B)60米的C處,測得塔頂A的仰角為30°,那么鐵塔的高度AB=________米.14.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE=_____°.15.如圖,點P是邊長為2的正方形ABCD的對角線BD上的動點,過點P分別作PE⊥BC于點E,PF⊥DC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EF交AH于點G,當點P在BD上運動時(不包括B、D兩點),以下結論:①MF=MC;②AH⊥EF;③AP2=PM?PH;④EF的最小值是.其中正確的是________.(把你認為正確結論的序號都填上)16.9的算術平方根是.17.同時拋擲兩枚質地均勻的硬幣,則兩枚硬幣全部正面向上的概率是.18.使得分式值為零的x的值是_________;三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)對于平面直角坐標系xOy中的點P和直線m,給出如下定義:若存在一點P,使得點P到直線m的距離等于1,則稱P為直線m的平行點.(1)當直線m的表達式為y=x時,①在點,,中,直線m的平行點是______;②⊙O的半徑為,點Q在⊙O上,若點Q為直線m的平行點,求點Q的坐標.(2)點A的坐標為(n,0),⊙A半徑等于1,若⊙A上存在直線的平行點,直接寫出n的取值范圍.20.(6分)某商場將每件進價為80元的某種商品按每件100元出售,一天可售出100件.后來經過市場調查,發現這種商品單價每降低1元,其銷量可增加10件.(1)若商場經營該商品一天要獲利潤2160元,則每件商品應降價多少元?(2)設后來該商品每件降價x元,商場一天可獲利潤y元.求出y與x之間的函數關系式,并求當x取何值時,商場獲利潤最大?21.(6分)如圖,拋物線y=﹣+bx+c交x軸于點A(﹣2,0)和點B,交y軸于點C(0,3),點D是x軸上一動點,連接CD,將線段CD繞點D旋轉得到DE,過點E作直線l⊥x軸,垂足為H,過點C作CF⊥l于F,連接DF.(1)求拋物線解析式;(2)若線段DE是CD繞點D順時針旋轉90°得到,求線段DF的長;(3)若線段DE是CD繞點D旋轉90°得到,且點E恰好在拋物線上,請求出點E的坐標.22.(8分)計算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.23.(8分)學校決定在學生中開設:A、實心球;B、立定跳遠;C、跳繩;D、跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖①②的統計圖,請結合圖中的信息解答下列問題:(1)在這項調查中,共調查了多少名學生?(2)請計算本項調查中喜歡“立定跳遠”的學生人數和所占百分比,并將兩個統計圖補充完整.(3)若調查到喜歡“跳繩”的5名學生中有2名男生,3名女生,現從這5名學生中任意抽取2名學生,請用畫樹狀圖或列表法求出剛好抽到不同性別學生的概率.24.(10分)如圖,在平面直角坐標系中,直線y=kx+3與軸、軸分別相交于點A、B,并與拋物線的對稱軸交于點,拋物線的頂點是點.(1)求k和b的值;(2)點G是軸上一點,且以點、C、為頂點的三角形與△相似,求點G的坐標;(3)在拋物線上是否存在點E:它關于直線AB的對稱點F恰好在y軸上.如果存在,直接寫出點E的坐標,如果不存在,試說明理由.25.(10分)解不等式組:3x+3≥2x+72x+426.(12分)P是⊙O內一點,過點P作⊙O的任意一條弦AB,我們把PA?PB的值稱為點P關于⊙O的“冪值”(1)⊙O的半徑為6,OP=1.①如圖1,若點P恰為弦AB的中點,則點P關于⊙O的“冪值”為_____;②判斷當弦AB的位置改變時,點P關于⊙O的“冪值”是否為定值,若是定值,證明你的結論;若不是定值,求點P關于⊙0的“冪值”的取值范圍;(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關于⊙O的“冪值”或“冪值”的取值范圍_____;(3)在平面直角坐標系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點P,使得點P關于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.27.(12分)如圖,四邊形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足為E,求證:AE=CE.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】解:作A關于y軸的對稱點A′,連接A′D交y軸于E,則此時,△ADE的周長最小.∵四邊形ABOC是矩形,∴AC∥OB,AC=OB.∵A的坐標為(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中點,∴D(﹣2,0).設直線DA′的解析式為y=kx+b,∴,∴,∴直線DA′的解析式為.當x=0時,y=,∴E(0,).故選B.2、D【解析】試題解析:由題意可知:x-1≠0,

x≠1

故選D.3、C【解析】

根據題意作出合適的輔助線,可知陰影部分的面積是△BCD的面積減去△BOE和扇形OEC的面積.【詳解】由題意可得,BC=CD=4,∠DCB=90°,連接OE,則OE=BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴陰影部分面積為:==6-π,故選C.【點睛】本題考查扇形面積的計算、正方形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.4、B【解析】

解:11人成績的中位數是第6名的成績.參賽選手要想知道自己是否能進入前6名,只需要了解自己的成績以及全部成績的中位數,比較即可.故選B.【點睛】本題考查統計量的選擇,掌握中位數的意義是本題的解題關鍵.5、A【解析】解:如圖,連接BE,設BE與AC交于點P′,∵四邊形ABCD是正方形,∴點B與D關于AC對稱,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC與BE的交點上時,PD+PE最小,為BE的長度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故選A.點睛:此題考查了軸對稱﹣﹣最短路線問題,正方形的性質,要靈活運用對稱性解決此類問題.找出P點位置是解題的關鍵.6、C【解析】

分析:先求出每個數的范圍,逐一分析得出選項.詳解:A、3<π<4,故本選項不符合題意;

B、1<π?2<2,故本選項不符合題意;

C、2<<3,故本選項符合題意;

D、3<<4,故本選項不符合題意;故選C.點睛:本題考查了估算無理數的大小,能估算出每個數的范圍是解本題的關鍵.7、B【解析】

根據冪的乘方,底數不變指數相乘;同底數冪相除,底數不變,指數相減;同底數冪相乘,底數不變指數相加,對各選項分析判斷利用排除法求解【詳解】A.a2與2a3不是同類項,故A不正確;B.a?a2=a3,正確;C.原式=a4,故C不正確;D.原式=a6,故D不正確;故選:B.【點睛】此題考查同底數冪的乘法,冪的乘方與積的乘方,解題的關鍵在于掌握運算法則.8、C【解析】

若兩個數的乘積是1,我們就稱這兩個數互為倒數.【詳解】解:5的倒數是.故選C.9、C【解析】

根據外接圓的性質,圓的對稱性,三角形的內心以及圓周角定理即可解出.【詳解】(1)一個三角形只有一個外接圓,正確;(2)圓既是軸對稱圖形,又是中心對稱圖形,正確;(3)在同圓中,相等的圓心角所對的弧相等,正確;(4)三角形的內心是三個內角平分線的交點,到三邊的距離相等,錯誤;故選:C.【點睛】此題考查了外接圓的性質,三角形的內心及軸對稱和中心對稱的概念,要求學生對這些概念熟練掌握.10、D【解析】

先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據概率公式求解.【詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是,故選:D.【點睛】本題考查了隨機事件的概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率.11、B【解析】

首先分別解出兩個不等式,再確定不等式組的解集,然后在數軸上表示即可.【詳解】解:解第一個不等式得:x>-1;解第二個不等式得:x≤1,在數軸上表示,故選B.【點睛】此題主要考查了解一元一次不等式組,以及在數軸上表示解集,把每個不等式的解集在數軸上表示出來(>,≥向右畫;<,≤向左畫),數軸上的點把數軸分成若干段,如果數軸的某一段上面表示解集的線的條數與不等式的個數一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<“>”要用空心圓點表示.12、C【解析】分析:根據每個選項所涉及的數學知識進行分析判斷即可.詳解:A選項中,“五邊形的外角和為360°”是真命題,故不能選A;B選項中,“切線垂直于經過切點的半徑”是真命題,故不能選B;C選項中,因為點(3,-2)關于y軸的對稱點的坐標是(-3,-2),所以該選項中的命題是假命題,所以可以選C;D選項中,“拋物線y=x2﹣4x+2017對稱軸為直線x=2”是真命題,所以不能選D.故選C.點睛:熟記:(1)凸多邊形的外角和都是360°;(2)切線的性質;(3)點P(a,b)關于y軸的對稱點為(-a,b);(4)拋物線的對稱軸是直線:等數學知識,是正確解答本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、20【解析】

在Rt△ABC中,直接利用tan∠ACB=tan30°==即可.【詳解】在Rt△ABC中,tan∠ACB=tan30°==,BC=60,解得AB=20.故答案為20.【點睛】本題考查的知識點是解三角形的實際應用,解題的關鍵是熟練的掌握解三角形的實際應用.14、1【解析】

根據△ABC中DE垂直平分AC,可求出AE=CE,再根據等腰三角形的性質求出∠ACE=∠A=30°,再根據∠ACB=80°即可解答.【詳解】∵DE垂直平分AC,∠A=30°,∴AE=CE,∠ACE=∠A=30°,∵∠ACB=80°,∴∠BCE=80°-30°=1°.故答案為:1.15、②③④【解析】

①可用特殊值法證明,當為的中點時,,可見.②可連接,交于點,先根據證明,得到,根據矩形的性質可得,故,又因為,故,故.③先證明,得到,再根據,得到,代換可得.④根據,可知當取最小值時,也取最小值,根據點到直線的距離也就是垂線段最短可得,當時,取最小值,再通過計算可得.【詳解】解:①錯誤.當為的中點時,,可見;②正確.如圖,連接,交于點,,,,,四邊形為矩形,,,,,,,.③正確.,,,,,又,,,,,.④正確.且四邊形為矩形,,當時,取最小值,此時,故的最小值為.故答案為:②③④.【點睛】本題是動點問題,綜合考查了矩形、正方形的性質,全等三角形與相似三角形的性質與判定,線段的最值問題等,合理作出輔助線,熟練掌握各個相關知識點是解答關鍵.16、1.【解析】

根據一個正數的算術平方根就是其正的平方根即可得出.【詳解】∵,∴9算術平方根為1.故答案為1.【點睛】本題考查了算術平方根,熟練掌握算術平方根的概念是解題的關鍵.17、.【解析】試題分析:畫樹狀圖為:共有4種等可能的結果數,其中兩枚硬幣全部正面向上的結果數為1,所以兩枚硬幣全部正面向上的概率=.故答案為.考點:列表法與樹狀圖法.18、2【解析】

根據分式的性質,要使分式有意義,則必須分母不能為0,要使分式為零,則只有分子為0,因此計算即可.【詳解】解:要使分式有意義則,即要使分式為零,則,即綜上可得故答案為2【點睛】本題主要考查分式的性質,關鍵在于分式的分母不能為0.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)①,;②,,,;(2).【解析】

(1)①根據平行點的定義即可判斷;②分兩種情形:如圖1,當點B在原點上方時,作OH⊥AB于點H,可知OH=1.如圖2,當點B在原點下方時,同法可求;(2)如圖,直線OE的解析式為,設直線BC//OE交x軸于C,作CD⊥OE于D.設⊙A與直線BC相切于點F,想辦法求出點A的坐標,再根據對稱性求出左側點A的坐標即可解決問題;【詳解】解:(1)①因為P2、P3到直線y=x的距離為1,所以根據平行點的定義可知,直線m的平行點是,,故答案為,.②解:由題意可知,直線m的所有平行點組成平行于直線m,且到直線m的距離為1的直線.設該直線與x軸交于點A,與y軸交于點B.如圖1,當點B在原點上方時,作OH⊥AB于點H,可知OH=1.由直線m的表達式為y=x,可知∠OAB=∠OBA=45°.所以.直線AB與⊙O的交點即為滿足條件的點Q.連接,作軸于點N,可知.在中,可求.所以.在中,可求.所以.所以點的坐標為.同理可求點的坐標為.如圖2,當點B在原點下方時,可求點的坐標為點的坐標為,綜上所述,點Q的坐標為,,,.(2)如圖,直線OE的解析式為,設直線BC∥OE交x軸于C,作CD⊥OE于D.當CD=1時,在Rt△COD中,∠COD=60°,∴,設⊙A與直線BC相切于點F,在Rt△ACE中,同法可得,∴,∴,根據對稱性可知,當⊙A在y軸左側時,,觀察圖象可知滿足條件的N的值為:.【點睛】此題考查一次函數綜合題、直線與圓的位置關系、銳角三角函數、解直角三角形等知識,解題的關鍵是學會用分類討論的思想思考問題,學會添加常用輔助線,構造直角三角形解決問題.20、(1)商店經營該商品一天要獲利潤2160元,則每件商品應降價2元或8元;(2)y=﹣10x2+100x+2000,當x=5時,商場獲取最大利潤為2250元.【解析】

(1)根據“總利潤=每件的利潤×每天的銷量”列方程求解可得;

(2)利用(1)中的相等關系列出函數解析式,配方成頂點式,利用二次函數的性質求解可得.【詳解】解:(1)依題意得:(100﹣80﹣x)(100+10x)=2160,即x2﹣10x+16=0,解得:x1=2,x2=8,經檢驗:x1=2,x2=8,答:商店經營該商品一天要獲利潤2160元,則每件商品應降價2元或8元;(2)依題意得:y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10<0,∴當x=5時,y取得最大值為2250元.答:y=﹣10x2+100x+2000,當x=5時,商場獲取最大利潤為2250元.【點睛】本題考查二次函數的應用和一元二次方程的應用,解題關鍵是由題意確定題目蘊含的相等關系,并據此列出方程或函數解析式.21、(1)拋物線解析式為y=﹣;(2)DF=3;(3)點E的坐標為E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【解析】

(1)將點A、C坐標代入拋物線解析式求解可得;(2)證△COD≌△DHE得DH=OC,由CF⊥FH知四邊形OHFC是矩形,據此可得FH=OC=DH=3,利用勾股定理即可得出答案;(3)設點D的坐標為(t,0),由(1)知△COD≌△DHE得DH=OC、EH=OD,再分CD繞點D順時針旋轉和逆時針旋轉兩種情況,表示出點E的坐標,代入拋物線求得t的值,從而得出答案.【詳解】(1)∵拋物線y=﹣+bx+c交x軸于點A(﹣2,0)、C(0,3),∴,解得:,∴拋物線解析式為y=﹣+x+3;(2)如圖1.∵∠CDE=90°,∠COD=∠DHE=90°,∴∠OCD+∠ODC=∠HDE+∠ODC,∴∠OCD=∠HDE.又∵DC=DE,∴△COD≌△DHE,∴DH=OC.又∵CF⊥FH,∴四邊形OHFC是矩形,∴FH=OC=DH=3,∴DF=3;(3)如圖2,設點D的坐標為(t,0).∵點E恰好在拋物線上,且EH=OD,∠DHE=90°,∴由(2)知,△COD≌△DHE,∴DH=OC,EH=OD,分兩種情況討論:①當CD繞點D順時針旋轉時,點E的坐標為(t+3,t),代入拋物線y=﹣+x+3,得:﹣(t+3)2+(t+3)+3=t,解得:t=1或t=﹣,所以點E的坐標E1(4,1)或E2(﹣,﹣);②當CD繞點D逆時針旋轉時,點E的坐標為(t﹣3,﹣t),代入拋物線y=﹣+x+3得:﹣(t﹣3)2+(t﹣3)+3=﹣t,解得:t=或t=.故點E的坐標E3(,﹣)或E4(,﹣);綜上所述:點E的坐標為E1(4,1)或E2(﹣,﹣)或E3(,﹣)或E4(,﹣).【點睛】本題主要考查二次函數的綜合問題,解題的關鍵是掌握待定系數法求函數解析式、全等三角形的判定與性質、矩形的判定與性質及分類討論思想的運用.22、【解析】分析:按照實數的運算順序進行運算即可.詳解:原式點睛:本題考查實數的運算,主要考查零次冪,負整數指數冪,特殊角的三角函數值以及二次根式,熟練掌握各個知識點是解題的關鍵.23、(1)150;(2)詳見解析;(3).【解析】

(1)用A類人數除以它所占的百分比得到調查的總人數;(2)用總人數分別減去A、C、D得到B類人數,再計算出它所占的百分比,然后補全兩個統計圖;(3)畫樹狀圖展示所有20種等可能的結果數,再找出剛好抽到不同性別學生的結果數,然后利用概率公式求解.【詳解】解:(1)15÷10%=150,所以共調查了150名學生;(2)喜歡“立定跳遠”學生的人數為150﹣15﹣60﹣30=45,喜歡“立定跳遠”的學生所占百分比為1﹣20%﹣40%﹣10%=30%,兩個統計圖補充為:(3)畫樹狀圖為:共有20種等可能的結果數,其中剛好抽到不同性別學生的結果數為12,所以剛好抽到不同性別學生的概率【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.也考查了統計圖.24、(1)k=-,b=1;(1)(0,1)和【解析】分析:(1)由直線經過點,可得.由拋物線的對稱軸是直線,可得,進而得到A、B、D的坐標,然后分兩種情況討論即可;(3)設E(a,),E關于直線AB的對稱點E′為(0,b),EE′與AB的交點為P.則EE′⊥AB,P為EE′的中點,列方程組,求解即可得到a的值,進而得到答案.詳解:(1)由直線經過點,可得.由拋物線的對稱軸是直線,可得.∵直線與x軸、y軸分別相交于點、,∴點的坐標是,點的坐標是.∵拋物線的頂點是點,∴點的坐標是.∵點是軸上一點,∴設點的坐標是.∵△BCG與△BCD相似,又由題意知,,∴△BCG與△相似有兩種可能情況:①如果,那么,解得,∴點的坐標是.②如果,那么,解得,∴點的坐標是.綜上所述:符合要求的點有兩個,其坐標分別是和.(3)設E(a,),E關于直線AB的對稱點E′為(0,b),EE′與AB的交點為P,則EE′⊥AB,P為EE′的中點,∴,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.當a=-1時,=;當a=1時,=;∴點的坐標是或.點睛:本題是二次函數的綜合題.考查了二次函數的性質、解析式的求法以及相似三角形的性質.解答(1)問的關鍵是要分類討論,解答(3)的關鍵是利用兩直線垂直則k的乘積為-1和P是EE′的中點.25、無解.【解析】試題分析:首先解每個不等式,兩個不等式的解集的公共部分就是不等式的解集.試題解析:由①得x≥4,由②得x<1,∴原不等式組無解,考點:解一元一次不等式;在數軸上表示不等式的解集.26、(1)①20;②當弦AB的位置改變時,點P關于⊙O的“冪值”為定值,證明見解析;(2)點P關于⊙O的“冪值”為r2﹣d2;(3)﹣3≤b≤.【解析】【詳解】(1)①如圖1所示:連接OA、OB、OP.由等腰三角形的三線合一的性質得到△PBO為直角三角形,然后依據勾股定理可求得PB的長,然后依據冪值的定義求解即可;②過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′.先證明△APA′∽△B′PB,依據相似三角形的性質得到PA?PB=PA′?PB′從而得出結論;(2)連接OP、過點P作AB⊥OP,交圓O與A、B兩點.由等腰三角形三線合一的性質可知AP=PB,然后在Rt△APO中,依據勾股定理可知AP2=OA2-OP2,然后將d、r代入可得到問題的答案;(3)過點C作CP⊥AB,先求得OP的解析式,然后由直線AB和OP的解析式,得到點P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論