


下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
wordword精品文檔,可編輯,歡迎下載線性代數模擬試題一一、填空題(每小題2分,共50分)Dn
a a,Dij
aij
(1) ;2x在函數fxx1
1 1x x中的系數是 (2)2 xx2
2x x2
2,1 A對于方程x x 3x ,,其系數矩陣= (3) ;1 2 3xx x 0.1 2 34.排列nnn2321的逆序數等于 (4) ;5.n階行列式共有 項,正負號由 (6) 決定.對于行列當時,a Aki kjk1
(7) .用克拉默法則解方程組的兩個條件:系數行列式不等于0(8).若n元線性方程組有解,且其系數矩陣的秩為,則當(9)時,方程組有無窮多解.矩陣與行列式有本質的區別,一個數字行列式經過計算可求得其值,而矩陣僅僅是(10)只有當(11)11.若A-|=12).A 1A
2A ,|A|=(13).2A s矩陣等價具有的三個性質為:反身性、(14)、傳遞性.矩陣的初等行變換包括(15)、ri
k、(16)三種.把矩陣用初等行變換變成為行階梯形矩陣0(17),當(18)0,當(19)有唯一解,當(20)沒解.mE),相當于對A實施(21)變換. m ij18.x(x,x1 2
n
a1
xa1
x2
xbn維向量空間中(22).na時,當(23)矩陣的秩與向量組的秩的關系為:(24).要證明某一向量組是方程組AX=0的基礎解系,需要證明三個結論:(a)該組向量都是方程組的解、(b) (25) (c)二、計算題(1030分)x a a1 2a x a1 2
a a3 na a3 n計算行列式的值D a an1 1 2
x a a.3 n a a a1 2 3
a x40 2 1 A1
1 2. 1 1 1 0 1 研究下列向量組的線性相關性1
2,3
2,353
0.2 三、證明題(第1題10分,第2題10分)用數學歸納法證明1 1x x1 2x2 x2
1 1x x3 nx2 x2
D 1n xn21xn1
2xn22xn2
3xn23xn3
n xn2n xnn
xx1
xn
xx jin i j
n2設是非齊次線性方程組AXB的一個解,1
,,
nr
是對應奇次方程組AX的一個基礎解系證明:(1),,, 線性無關;1 nr(2),1
,,
nr
是方程組AXB的nr個線性無關的解.方程組AXB的任一解X都可以表示為這nr個解的線性組合,而且組合系數之和為1.參考答案一、填空題(每小題2分,共50分)(1)(1)na;(2)-2;1 2(3)2 11 1
13;1(4)
2 ;(5)n!;(6)下標排列的逆序數;(7)|A|;方程組中未知數個數與方程個數相等;rn;(10)(11)第一個矩陣的列數等于第二個矩陣的行數時;(12)A1;A AA;1 2 s對稱性;ri
r;jri
kr;j階數;(18)RAn;(19)RAR(B)n;(20)RAR(B);第二種初等行變換 ri
k;超平面;(23)0(24)相等;(25)向量組線性無關;二、計算題(每小題10分,共30分)x a a1 2a x a1 2
a a3 na a3 n計算行列式的值D a an1 1 2
x a a.3 n a a a1 2 3
a x4解:將第2,3,,n1列都加到第一列,得:xnaiai1aixni
a a a1 2 nx a anD i1 2nn1
xna ai 1
x an xnaii1
a a x2 3提取第一列的公因子,得:
1 a a a11 x a2 an1Dn1
(x
a)1i
a 2
an.ni1 1 a a x2 3(a)(a),(a)倍12 n1加到最后一列,得1 01 xa
0 00 0Dn1
(x
a)1i
a12
xa 02i1 1
aa2
aa3
xan(xn
ai
(xa).i0 2
i1 i1A1
1 2. 1 1 解:作分塊矩(E),施行初等行變.0 2 1 1 0 0r
r1 1 2 0 1 0
r1 1 2 0 1 01 1 2 0 1 0
2 0 2 1 1 0 0
3
1 0 2 1 1 0 0 1 1 1 0 0 1 1 1 r r1 1 2 0 1 0r r1 1 0 0 1 22
3 0 2 0 1 1 1
12
3 0 2 0 1 1 1 0 0 1 0 1 1 100110121210011012120101
2r
r1 0 0 12 32 52220
12
2 0 1 0 12 12 12 0 1
0 0 1
0 1 1 12 32 52 2 12 12
1 0 1 研究下列向量組的線性相關性1
2,3
2,353
0.2 1 0 1 0解1:令k
k
k
0,即k
2k
2k
00 1 1 2 2 3
13 25 32 0 k2 1
k 3
()整理得到 k k 1 23k5k 2k 0. 1 2 31 0 1線性方程的系數行列式2 2 0線性方程必有非零,從而3 5 2,,.1 2 31 0 1 1
0 1 解
2,2,0,矩陣A,,)2 2 0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 學校班班通管理制度
- 學生休閑室管理制度
- 學生科學生管理制度
- 宅急送薪酬管理制度
- 安全色標志管理制度
- 安生產責任管理制度
- 安裝及維修管理制度
- 定制化服務管理制度
- 實訓室考核管理制度
- 客服直播間管理制度
- 2025年四川省自貢市中考物理試卷及答案
- 2025年6月14日萍鄉市事業單位面試真題及答案解析
- 2025年高考真題-語文(全國二卷) 含解析
- 2025年廬山市國有投資控股集團有限公司招聘筆試沖刺題(帶答案解析)
- 溝通與演講2023學習通超星課后章節答案期末考試題庫2023年
- 焊接技能訓練教案.
- 斷路器的控制回路和信號回路
- 內部控制專項審計實施方案
- 硅膠管檢驗管理規定
- 勞動工資統計培訓PPT課件
- DSP課設——正弦波發生器
評論
0/150
提交評論