




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.2.如圖,在半徑為1的⊙O中,直徑AB把⊙O分成上、下兩個半圓,點C是上半圓上一個動點(C與點A、B不重合),過點C作弦CD⊥AB,垂足為E,∠OCD的平分線交⊙O于點P,設CE=x,AP=y,下列圖象中,最能刻畫y與x的函數關系的圖象是()A. B.C. D.3.如圖,在菱形ABCD中,于E,,,則菱形ABCD的周長是A.5 B.10 C.8 D.124.在平面直角坐標系中,點A(0,2)、B(a,a+2)、C(b,0)(a>0,b>0),若AB=且∠ACB最大時,b的值為()A. B. C. D.5.計算:tan45°+sin30°=(
)A. B. C. D.6.下列圖形中是中心對稱圖形的有()個.A.1 B.2 C.3 D.47.如圖,二次函數的最大值為3,一元二次方程有實數根,則的取值范圍是A.m≥3 B.m≥-3 C.m≤3 D.m≤-38.如圖,AB是⊙O的直徑,EF,EB是⊙O的弦,且EF=EB,EF與AB交于點C,連接OF,若∠AOF=40°,則∠F的度數是()A.20° B.35° C.40° D.55°9.小兵身高1.4m,他的影長是2.1m,若此時學校旗桿的影長是12m,那么旗桿的高度()A.4.5m B.6m C.7.2m D.8m10.下列方程中,關于x的一元二次方程是()A.x2﹣x(x+3)=0 B.ax2+bx+c=0C.x2﹣2x﹣3=0 D.x2﹣2y﹣1=011.正方形ABCD內接于⊙O,若⊙O的半徑是,則正方形的邊長是()A.1 B.2 C. D.212.二次函數y=ax2+bx+c的部分對應值如表:利用該二次函數的圖象判斷,當函數值y>0時,x的取值范圍是()A.0<x<8 B.x<0或x>8 C.﹣2<x<4 D.x<﹣2或x>4二、填空題(每題4分,共24分)13.P是等邊△ABC內部一點,∠APB、∠BPC、∠CPA的大小之比是5:6:7,將△ABP逆時針旋轉,使得AB與AC重合,則以PA、PB、PC的長為邊的三角形的三個角∠PCQ:∠QPC:∠PQC=________.14.我國古代數學著作《增刪算法統宗》記載“圓中方形”問題:“今有圓田一段,中間有個方池,丈量田地待耕犁,恰好三分在記,池面至周有數,每邊三步無疑,內方圓徑若能知,堪作算中第一.”其大意為:有一塊圓形的田,中間有一塊正方形水池,測量出除水池外圓內可耕地的面積恰好72平方步,從水池邊到圓周,每邊相距3步遠.如果你能求出正方形的邊長是x步,則列出的方程是_______________.15.方程x2=2020x的解是_____.16.如圖,已知∠AOB=30°,在射線OA上取點O1,以點O1為圓心的圓與OB相切;在射線O1A上取點O2,以點O2為圓心,O2O1為半徑的圓與OB相切;在射線O2A上取點O3,以點O3為圓心,O3O2為半徑的圓與OB相切……,若⊙O1的半徑為1,則⊙On的半徑是______________.17.正的邊長為,邊長為的正的頂點與點重合,點分別在,上,將沿邊順時針連續翻轉(如圖所示),直至點第一次回到原來的位置,則點運動路徑的長為(結果保留)18.如圖,在大樓AB的樓頂B處測得另一棟樓CD底部C的俯角為60度,已知A、C兩點間的距離為15米,那么大樓AB的高度為_____米.(結果保留根號)三、解答題(共78分)19.(8分)實行垃圾分類和垃圾資源化利用,關系廣大人民群眾生活環境,關系節約使用資源,也是社會文明水平的一個重要體現.某環保公司研發了甲、乙兩種智能設備,可利用最新技術將干垃圾進行分選破碎制成固化成型燃料棒,干垃圾由此變身新型清潔燃料.某垃圾處理廠從環保公司購入以上兩種智能設備若干,已知購買甲型智能設備花費萬元,購買乙型智能設備花費萬元,購買的兩種設備數量相同,且兩種智能設備的單價和為萬元.求甲、乙兩種智能設備單價;垃圾處理廠利用智能設備生產燃料棒,并將產品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的,且生產每噸燃料棒所需人力成本比物資成本的倍還多元.調查發現,若燃料棒售價為每噸元,平均每天可售出噸,而當銷售價每降低元,平均每天可多售出噸.垃圾處理廠想使這種燃料棒的銷售利潤平均每天達到元,且保證售價在每噸元基礎上降價幅度不超過,求每噸燃料棒售價應為多少元?20.(8分)如圖,拋物線與直線相交于,兩點,且拋物線經過點(1)求拋物線的解析式.(2)點是拋物線上的一個動點(不與點點重合),過點作直線軸于點,交直線于點.當時,求點坐標;(3)如圖所示,設拋物線與軸交于點,在拋物線的第一象限內,是否存在一點,使得四邊形的面積最大?若存在,請求出點的坐標;若不存在,說明理由.21.(8分)如圖,甲分為三等分數字轉盤,乙為四等分數字轉盤,自由轉動轉盤.(1)轉動甲轉盤,指針指向的數字小于3的概率是;(2)同時自由轉動兩個轉盤,用列舉的方法求兩個轉盤指針指向的數字均為奇數的概率.22.(10分)某市百貨商店服裝部在銷售中發現“米奇”童裝平均每天可售出件,每件獲利元.為了擴大銷售,減少庫存,增加利潤,商場決定采取適當的降價措施,經過市場調查,發現如果每件童裝每降價元,則平均每天可多售出件,要想平均每天在銷售這種童裝上獲利元,那么每件童裝應降價多少元?23.(10分)如圖,在某建筑物上,掛著“緣分天注定,悠然在潛山”的宣傳條幅,小明站在點處,看條幅頂端,測得仰角為,再往條幅方向前行30米到達點處,看到條幅頂端,測得仰角為,求宣傳條幅的長.(注:不計小明的身高,結果精確到1米,參考數據,)24.(10分)制作一種產品,需先將材料加熱達到60℃后,再進行操作.設該材料溫度為y(℃),從加熱開始計算的時間為x(分鐘).據了解,設該材料加熱時,溫度y與時間x成一次函數關系;停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知該材料在操作加工前的溫度為15℃,加熱5分鐘后溫度達到60℃.(1)求將材料加熱時,y與x的函數關系式;(2)求停止加熱進行操作時,y與x的函數關系式;(3)根據工藝要求,當材料的溫度低于15℃時,須停止操作,那么操作時間是多少?25.(12分)如圖,⊙O與△ABC的AC邊相切于點C,與BC邊交于點E,⊙O過AB上一點D,且DE∥AO,CE是⊙O的直徑.(1)求證:AB是⊙O的切線;(2)若BD=4,EC=6,求AC的長.26.在邊長為1的小正方形網格中,的頂點均在格點上,將繞點逆時針旋轉,得到,請畫出.
參考答案一、選擇題(每題4分,共48分)1、C【分析】作MH⊥AC于H,如圖,根據正方形的性質得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據角平分線性質得BM=MH=,則AB=2+,于是利用正方形的性質得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【點睛】本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.也考查了角平分線的性質和正方形的性質.2、A【分析】連接OP,根據條件可判斷出PO⊥AB,即AP是定值,與x的大小無關,所以是平行于x軸的線段.要注意CE的長度是小于1而大于0的.【詳解】連接OP,∵OC=OP,∴∠OCP=∠OPC.∵∠OCP=∠DCP,CD⊥AB,∴∠OPC=∠DCP.∴OP∥CD.∴PO⊥AB.∵OA=OP=1,∴AP=y=(0<x<1).故選A.【點睛】解決有關動點問題的函數圖象類習題時,關鍵是要根據條件找到所給的兩個變量之間的函數關系,尤其是在幾何問題中,更要注意基本性質的掌握和靈活運用.3、C【解析】連接AC,根據線段垂直平分線的性質可得AB=AC=2,然后利用周長公式進行計算即可得答案.【詳解】如圖連接AC,,,,菱形ABCD的周長,故選C.【點睛】本題考查了菱形的性質、線段的垂直平分線的性質等知識,熟練掌握的靈活應用相關知識是解題的關鍵.4、B【分析】根據圓周角大于對應的圓外角可得當的外接圓與軸相切時,有最大值,此時圓心F的橫坐標與C點的橫坐標相同,并且在經過AB中點且與直線AB垂直的直線上,根據FB=FC列出關于b的方程求解即可.【詳解】解:∵AB=,A(0,2)、B(a,a+2)∴,解得a=4或a=-4(因為a>0,舍去)∴B(4,6),設直線AB的解析式為y=kx+2,將B(4,6)代入可得k=1,所以y=x+2,利用圓周角大于對應的圓外角得當的外接圓與軸相切時,有最大值.如下圖,G為AB中點,,設過點G且垂直于AB的直線,將代入可得,所以.設圓心,由,可知,解得(已舍去負值).故選:B.【點睛】本題考查圓的綜合題,一次函數的應用和已知兩點坐標,用勾股定理求兩點距離.能結合圓的切線和圓周角定理構建圖形找到C點的位置是解決此題的關鍵.5、C【解析】代入45°角的正切函數值和30°角的正弦函數值計算即可.【詳解】解:原式=故選C.【點睛】熟記“45°角的正切函數值和30°角的正弦函數值”是正確解答本題的關鍵.6、B【解析】∵正三角形是軸對稱能圖形;平行四邊形是中心對稱圖形;正五邊形是軸對稱圖形;正六邊形既是中心對稱圖形又是軸對稱圖形,∴中心對稱圖形的有2個.故選B.7、C【解析】方程ax2+bx+c-m=0有實數相當于y=ax2+bx+c(a≠0)平移m個單位與x軸有交點,結合圖象可得出m的范圍.【詳解】方程ax2+bx+c-m=0有實數根,相當于y=ax2+bx+c(a≠0)平移m個單位與x軸有交點,又∵圖象最高點y=3,∴二次函數最多可以向下平移三個單位,∴m≤3,故選:C.【點睛】本題主要考查二次函數圖象與一元二次方程的關系,掌握二次函數圖象與x軸交點的個數與一元二次方程根的個數的關系是解題的關鍵.8、B【解析】連接FB,由鄰補角定義可得∠FOB=140°,由圓周角定理求得∠FEB=70°,根據等腰三角形的性質分別求出∠OFB、∠EFB的度數,繼而根據∠EFO=∠EBF-∠OFB即可求得答案.【詳解】連接FB,則∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故選B.【點睛】本題考查了圓周角定理、等腰三角形的性質等知識,正確添加輔助線,熟練掌握和靈活運用相關知識是解題的關鍵.9、D【分析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經過物體頂部的太陽光線三者構成的兩個直角三角形相似.【詳解】根據相同時刻的物高與影長成比例,設旗桿的高度為xm,根據題意得:,解得:x=8,即旗桿的高度為8m,故選:D.【點睛】本題主要考查了相似三角形的應用,同一時刻物高和影長成正比,考查利用所學知識解決實際問題的能力.10、C【分析】一元二次方程必須滿足四個條件:(1)未知數的最高次數是2;(2)二次項系數不為0;(3)是整式方程;(4)含有一個未知數.由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】解:A、x2﹣x(x+3)=0,化簡后為﹣3x=0,不是關于x的一元二次方程,故此選項不合題意;B、ax2+bx+c=0,當a=0時,不是關于x的一元二次方程,故此選項不合題意;C、x2﹣2x﹣3=0是關于x的一元二次方程,故此選項符合題意;D、x2﹣2y﹣1=0含有2個未知數,不是關于x的一元二次方程,故此選項不合題意;故選:C.【點睛】此題主要考查了一元二次方程的定義,判斷一個方程是否是一元二次方程應注意抓住5個方面:“化簡后”;“一個未知數”;“未知數的最高次數是2”;“二次項的系數不等于0”;“整式方程”.11、B【分析】作OE⊥AD于E,連接OD,在Rt△ODE中,根據垂徑定理和勾股定理即可求解.【詳解】解:作OE⊥AD于E,連接OD,則OD=.在Rt△ODE中,易得∠EDO為45,△ODE為等腰直角三角形,ED=OE,OD===.可得:ED=1,AD=2ED=2,所以B選項是正確的.【點睛】此題主要考查了正多邊形和圓,本題需仔細分析圖形,利用垂徑定理與勾股定理即可解決問題.12、C【分析】觀察表格得出拋物線頂點坐標是(1,9),對稱軸為直線x=1,而當x=-2時,y=0,則拋物線與x軸的另一交點為(1,0),由表格即可得出結論.【詳解】由表中的數據知,拋物線頂點坐標是(1,9),對稱軸為直線x=1.當x<1時,y的值隨x的增大而增大,當x>1時,y的值隨x的增大而減小,則該拋物線開口方向向上,所以根據拋物線的對稱性質知,點(﹣2,0)關于直線直線x=1對稱的點的坐標是(1,0).所以,當函數值y>0時,x的取值范圍是﹣2<x<1.故選:C.【點睛】本題考查了二次函數與x軸的交點、二次函數的性質等知識,解答本題的關鍵是要認真觀察,利用表格中的信息解決問題.二、填空題(每題4分,共24分)13、3:4:2【分析】將△APB繞A點逆時針旋轉60得△AQC,顯然有△AQC≌△APB,連PQ,可得△AQP是等邊三角形,△QCP的三邊長分別為PA,PB,PC,由∠APB+∠BPC+∠CPA=360,∠APB:∠BPC:∠CPA=5:6:7,可得∠APB=100,∠BPC=120,∠CPA=140,可得答案.【詳解】解:如圖,將△APB繞A點逆時針旋轉60得△AQC,顯然有△AQC≌△APB,連PQ,AQ=AP,∠QAP=60,△AQP是等邊三角形,PQ=AP,QC=PB,△QCP的三邊長分別為PA,PB,PC,∠APB+∠BPC+∠CPA=360,∠APB:∠BPC:∠CPA=5:6:7,∠APB=100,∠BPC=120,∠CPA=140,∠PQC=∠AQC-∠AQP=∠APB-∠AQP=100-60=40,∠QPC=∠APC-∠APQ=140-60=80,∠PCQ=180-(40+80)=60,∠PCQ:∠QPC:∠PQC=3:4:2,故答案為:3:4:2.【點睛】本題主要考查旋轉的性質及等邊三角形的性質,綜合性大,注意運算的準確性.14、【分析】根據圓的面積-正方形的面積=可耕地的面積即可解答.【詳解】解:∵正方形的邊長是x步,圓的半徑為()步∴列方程得:.故答案為.【點睛】本題考查圓的面積計算公式,解題關鍵是找出等量關系.15、x1=0,x2=1.【分析】利用因式分解法求解可得.【詳解】移項得:x2﹣1x=0,∴x(x﹣1)=0,則x=0或x﹣1=0,解得x1=0,x2=1,故答案為:x1=0,x2=1.【點睛】本題主要考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵.16、2n?1【分析】作O1C、O2D、O3E分別⊥OB,易找出圓半徑的規律,即可解題.【詳解】解:作O1C、O2D、O3E分別⊥OB,∵∠AOB=30°,∴OO1=2CO1,OO2=2DO2,OO3=2EO3,∵O1O2=DO2,O2O3=EO3,∴圓的半徑呈2倍遞增,∴⊙On的半徑為2n?1
CO1,∵⊙O1的半徑為1,∴⊙O10的半徑長=2n?1,故答案為:2n?1.【點睛】本題考查了圓切線的性質,考查了30°角所對直角邊是斜邊一半的性質,本題中找出圓半徑的規律是解題的關鍵.17、【解析】從圖中可以看出翻轉的第一次是一個120度的圓心角,半徑是1,所以弧長=,第二次是以點P為圓心,所以沒有路程,在BC邊上,第一次第二次同樣沒有路程,AC邊上也是如此,點P運動路徑的長為18、【分析】由解直角三角形,得,即可求出AB的值.【詳解】解:根據題意,△ABC是直角三角形,∠A=90°,∴,∴;∴大樓AB的高度為米.故答案為:.【點睛】此題考查了解直角三角形的應用——仰角俯角問題,熟練掌握銳角三角函數定義是解本題的關鍵.三、解答題(共78分)19、(1)甲設備萬元每臺,乙設備萬元每臺.(2)每噸燃料棒售價應為元.【分析】(1)設甲單價為萬元,則乙單價為萬元,再根據購買甲型智能設備花費萬元,購買乙型智能設備花費萬元,購買的兩種設備數量相同列出分式方程并解答即可;(2)先求出每噸燃料棒成本為元,然后根據題意列出一元二次方程解答即可.【詳解】解:設甲單價為萬元,則乙單價為萬元,則:解得經檢驗,是所列方程的根.答:甲設備萬元每臺,乙設備萬元每臺.設每噸燃料棒成本為元,則其物資成本為,則:,解得設每噸燃料棒在元基礎上降價元,則解得.每噸燃料棒售價應為元.【點睛】本題考查分式方程和一元二次方程的應用,解題的關鍵在于弄懂題意、找到等量關系、并正確列出方程.20、(1);(2)點坐標為(2,9)或(6,-7);(3)存在點Q()使得四邊形OFQC的面積最大,見解析.【分析】(1)先由點在直線上求出點的坐標,再利用待定系數法求解可得;(2)可設出點坐標,則可表示出、的坐標,從而可表示出和的長,由條件可知到關于點坐標的方程,則可求得點坐標;(3)作軸于點,設,,知,,,根據四邊形的面積建立關于的函數,再利用二次函數的性質求解可得.【詳解】解:(1)點在直線上,,,把、、三點坐標代入拋物線解析式可得,解得,拋物線解析式為;(2)設,則,,則,,,,當時,解得或,但當時,與重合不合題意,舍去,;當時,解得或,但當時,與重合不合題意,舍去,;綜上可知點坐標為或;(3)存在這樣的點,使得四邊形的面積最大.如圖,過點作軸于點,設,,則,,,四邊形的面積,當時,四邊形的面積取得最大值,最大值為,此時點的坐標為,.【點睛】本題是二次函數的綜合問題,解題的關鍵是掌握待定系數法求函數解析式、二次函數的性質及利用割補法列出四邊形面積的函數關系式.21、(1);(2)【解析】(1)根據甲盤中的數字,可判斷求出概率;(2)列出符合條件的所有可能,然后確定符合條件的可能,求出概率即可.【詳解】(1)甲轉盤共有1,2,3三個數字,其中小于3的有1,2,∴P(轉動甲轉盤,指針指向的數字小于3)=,故答案為.(2)樹狀圖如下:由樹狀圖知,共有12種等可能情況,其中兩個轉盤指針指向的數字為奇數的有4種情況,所以兩個轉盤指針指向的數字均為奇數的概率P==.22、應該降價元.【解析】設每件童裝應降價x元,那么就多賣出2x件,根據每天可售出20件,每件獲利40元.為了擴大銷售,減少庫存,增加利潤,商場決定采取適當的降價措施,要想平均每天在銷售這種童裝上獲利1200元,可列方程求解.【詳解】設每件童裝應降價元,由題意得:,解得:或.因為減少庫存,所以應該降價元.【點睛】本題考查一元二次方程的應用,關鍵找到降價和賣的件數的關系,根據利潤列方程求解.23、宣傳條幅BC的長約為26米.【分析】先根據三角形的外角性質得出,再根據等腰三角形的判定可得BE的長,然后利用的正弦值求解即可.【詳解】由題意得米(米)在中,,即(米)答:宣傳條幅BC的長約為26米.【點睛】本題考查了等腰三角形的判定、解直角三角形等知識點,熟記正弦值的定義及特殊角的正弦值是解題關鍵.24、(1)y=9x+15;(2)y=;(3)15分鐘【解析】(1)設加熱時y=kx+b(k≠0),停止加熱后y=a/x(a≠0),把b=15,(5,60)代入求解(2)把y=15代入反比例函數求得25、(1)見解析;(2)AC=1【分析】(1)要證/r/
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- YC/T 370-2023烤煙中非煙物質控制技術規程
- TD/T 1040-2013土地整治項目制圖規范
- LY/T 3366-2024花卉術語
- 小學《窗邊的小豆豆》 名著導讀課件
- 標準化落地分享王愛華營銷全委分委主任84課件
- 考研復習-風景園林基礎考研試題【模擬題】附答案詳解
- 風景園林基礎考研資料試題及答案詳解(歷年真題)
- 《風景園林招投標與概預算》試題A附參考答案詳解(綜合題)
- 2025年黑龍江省五常市輔警招聘考試試題題庫含答案詳解(預熱題)
- 通信原理簡明教程(第2版)課件 第2章 預備知識
- 2025年安全生產考試題庫:安全生產隱患排查治理安全教育培訓試題
- 上海韻達java面試題及答案
- T/CIQA 32-2022出入境生物安全消毒服務機構質量管理要求
- 電競店加盟合同協議書
- 6s安全管理考試試題及答案
- 【滇人版】《信息技術》四年級第4冊 第10.1課《設置動畫效果》課件
- 2025年甘肅省平涼市崆峒區中考二模英語試題
- 租房銷售實戰技能培訓
- 2025國開電大《個人與團隊管理》形考任務1-10答案
- 湖南2024生地會考試卷及答案
- GB/T 196-2025普通螺紋基本尺寸
評論
0/150
提交評論